# NOT RUN {
# 9 items from dass data for 250 cases
data(dass)
inData <- dass[1:250,c("d1", "d2", "d3", "a1","a2","a3","s1","s2","s3")]
#--- input for uni-dimensional
inTraitAdj <- matrix(1, nrow=1, ncol=1)
inItemTraitAdj <- matrix(1, nrow=9, ncol=1)
#--- Uni-dimensional Nominal Model
n1 <- ple.lma(inData, model.type="nominal", inItemTraitAdj,inTraitAdj, tol=1e-02)
# Since this function in internal to fit.nominal, need to also run
s <- set.up(inData, model.type='nominal', inTraitAdj, inItemTraitAdj)
convergence.stats(n1$item.log, n1$nitems, n1$nless, s$LambdaName, s$NuName)
#--- Multidimensional models
#--- re-define inTraitAdj and inItemTraitAdj for 3 dimensional models
inTraitAdj <- matrix(1, nrow=3, ncol=3)
dpress <- matrix(c(1,0,0), nrow=3, ncol=3, byrow=TRUE)
anxiety <- matrix(c(0,1,0), nrow=3, ncol=3, byrow=TRUE)
stress <- matrix(c(0,0,1), nrow=3, ncol=3, byrow=TRUE)
das <- list(dpress, anxiety, stress)
inItemTraitAdj <- rbind(das[[1]], das[[2]], das[[3]])
#--- 3 dimensional nominal
n3 <- ple.lma(inData, model.type="nominal", inItemTraitAdj, inTraitAdj, tol=1e-03)
s <- set.up(inData, model.type='nominal', inTraitAdj, inItemTraitAdj)
convergence.stats(n3$item.log, n3$nitems, n3$nless, s$LambdaName, s$NuName)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab