# NOT RUN {
# 9 items from dass data for 250 cases
data(dass)
inData <- dass[1:250,c("d1", "d2", "d3", "a1","a2","a3","s1","s2","s3")]
#--- input for uni-dimensional
inTraitAdj <- matrix(1, nrow=1, ncol=1)
inItemTraitAdj <- matrix(1, nrow=9, ncol=1)
# }
# NOT RUN {
#--- fit Unidiemsional gpcm Model
g1<- ple.lma(inData, model.type="gpcm",inItemTraitAdj,inTraitAdj, tol= 1e-03)
# Since convergenceGPCM is internal to fit.gpcm, need to get 'Lambdaname'
s <- set.up(inData, model.type='gpcm', inTraitAdj, inItemTraitAdj)
convergenceGPCM(g1$item.log, g1$nitems, g1$ncat, g1$nless, s$LambdaName)
#--- Multidimensional models
#--- re-define inTraitAdj and inItemTraitAdj for 3 dimensional models
inData <- dass[1:250,c("d1", "d2", "d3", "a1","a2","a3","s1","s2","s3")]
inTraitAdj <- matrix(1, nrow=3, ncol=3)
dpress <- matrix(c(1,0,0), nrow=3, ncol=3, byrow=TRUE)
anxiety <- matrix(c(0,1,0), nrow=3, ncol=3, byrow=TRUE)
stress <- matrix(c(0,0,1), nrow=3, ncol=3, byrow=TRUE)
das <- list(dpress, anxiety, stress)
inItemTraitAdj <- rbind(das[[1]], das[[2]], das[[3]])
#--- 3 dimensional gpcm
g3 <- ple.lma(inData, model.type="gpcm", inItemTraitAdj, inTraitAdj, tol=1e-03)
s <- set.up(inData, model.type='gpcm', inTraitAdj, inItemTraitAdj)
convergenceGPCM(g1$item.log, g1$nitems, g1$ncat, g1$nless, s$LambdaName)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab