This function is internal to the function 'fit.gpcm' and performs the item regressions. It is a core function of the pseudo-likelihood algorithm for items of the GPCM. The function calls function 'itemGPCM.data' to create the data for input into 'mlogit', which is use to fit a conditional multinomial model for each item. The up-dated scale values are put into the Master data frame and the 'item.log' array. It generally would not run outside of 'fit.gpcm' or 'ple.lma'.
item.gpcm(
Master,
item.log,
Phi.mat,
fitem,
TraitByTrait,
PersonByItem,
npersons,
nitems,
ncat,
nless,
ntraits,
Maxnphi,
pq.mat,
starting.sv,
LambdaName
)
Master data frame
History over iterations of items' log likelihood and estimates of lambda, and item parameters
Starting value of matrix of association parameters (optional)
Formula for item regressions
Trait adjacency matrix (same as inTraitAdj)
Same as inData
Number of persons
Number of items
Number of categories per item
Number of unique lambdas and unique nus per item
Number of latent traits
Number of phi parameters to bet estimated (NULL for 1 dimensional)
Used to compute rest-scores and totals
Fixed category scores
Lambda names for formula for items item regressions
Master Master data frame with up-dated category scores for items
item.log Up-dated history array over iterations of the algorithm of items' log likelihood and estimated lambda and alpha parameters