Learn R Programming

plgem (version 1.44.0)

Detect differential expression in microarray and proteomics datasets with the Power Law Global Error Model (PLGEM)

Description

The Power Law Global Error Model (PLGEM) has been shown to faithfully model the variance-versus-mean dependence that exists in a variety of genome-wide datasets, including microarray and proteomics data. The use of PLGEM has been shown to improve the detection of differentially expressed genes or proteins in these datasets.

Copy Link

Version

Version

1.44.0

License

GPL-2

Maintainer

Norman Pavelka

Last Published

February 15th, 2017

Functions in plgem (1.44.0)

plgem.deg

Selection of Differentially Expressed Genes/Proteins With PLGEM
plgem.pValue

Computation of PLGEM p-values
plgem.resampledStn

Computation of Resampled PLGEM-STN Statistics
setGpar

Set graphical parameters for PLGEM fitting evaluation plots
plgem.fit

PLGEM Fitting and Evaluation
run.plgem

Wrapper for Power Law Global Error Model (PLGEM) analysis method
LPSeset

ExpressionSet for Testing PLGEM
plgem.write.summary

Write the Result of a PLGEM Analysis to the Working Directory
plgem.obsStn

Computation of Observed PLGEM-STN Statistics