Learn R Programming

plgp (version 1.0)

init.GP: Initialize particles for GPs

Description

Functions for initializing particles for Gaussian process (GP) regression, classification, or combined unknown constraint models

Usage

init.GP(prior, d = NULL, g = NULL, Y = NULL)
init.CGP(prior, d = NULL, g = NULL)
init.ConstGP(prior)

Arguments

prior
prior parameters passed from PL generated by one of the prior functions, e.g., prior.GP
d
initial range (or length-scale) parameter(s) for the GP correlation function(s)
g
initial nugget parameter for the GP correlation
Y
data used to update GP sufficient information in the case of init.GP; if NULL then pall$Y is used

Value

  • Returns a particle for internal use in the PL method

References

Gramacy, R. and Polson, N. (2010). Particle learning of Gaussian process models for sequential design and optimization. Tech. Rep. arXiv:0909.5262, University of Cambridge.

Gramacy, R. and Lee, H. (2010). Optimization under unknown constraints. Bayesian Statistics 9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.); Oxford University Press

http://www.statslab.cam.ac.uk/~bobby/plgp.html

See Also

PL, draw.GP

Examples

Run this code
## See the demos via demo(package="plgp") and the examples
## section of ?plgp

Run the code above in your browser using DataLab