prior.GP(m, cov = c("isotropic", "separable"))
prior.CGP(m, cov = c("isotropic", "separable"))
prior.ConstGP(m, cov.GP = c("isotropic", "separable"),
cov.CGP = cov.GP)
"isotropic"
or "separable"
power
exponential correlation function with power 2 -- nugget included;
applies to both regression and classification GPsinit.GP
and pred.GP
. The object returned
may be modified as necessary. The prior.ConstGP
is essentially the combination
of prior.GP
and prior.CGP
for regression and classification GP models, respectively
Gramacy, R. and Lee, H. (2010).
PL
, lpredprob.GP
,
propagate.GP
, init.GP
,
pred.GP
## See the demos via demo(package="plgp") and the examples
## section of ?plgp
Run the code above in your browser using DataLab