lm
function on
transformed data.plm(formula, data, subset, na.action, effect = "individual",
model = "within", instruments = NULL, random.method = "swar",
inst.method = "bvk", index = NULL, pvar = TRUE, ...)
## S3 method for class 'plm':
summary(object, ...)
## S3 method for class 'summary.plm':
print(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), ...)
"plm"
,data.frame
,lm
,lm
,"individual"
, "time"
or "twoways"
,"pooling"
, "within"
,
"between"
, "random",
"fd"
and "ht"
,"swar"
(the default
value), "amemiya"
, "walhus"
and "nerlove"
,"bvk"
and "baltagi"
,TRUE
, the pvar
function is called,plm
is a general function for the estimation of linear
panel models. It supports the following estimation methods:
pooled OLS (model="pooling"
), fixed effects ("within"
),
random effects ("random"
), first--difference ("fd}) and
between (code{"between"}). It supports unbalanced panels and two--ways
effects (although not with all methods).
For random effect models, 4 estimators of the transformation
parameter are available : code{swar} (Swamy and Arora),
code{amemiya}, code{walhus} (Wallace and Hussain) and code{nerlove}.
Instrumental variables estimation is obtained using different
syntaxes. If for example, the model is code{y~x1+x2+x3}, code{x1},
code{x2} are endogenous and code{z1}, code{z2} are external
instruments, the model can be estimated with :
itemize{
item code{formula=y~x1+x2+x3, instruments=~x3+z1+z2},
item code{formula=y~x1+x2+x3, instruments=~.-x1-x2+z1+z2},
item code{formula=y~x1+x2+x3 | x3+z1+z2},
item code{formula=y~x1+x2+x3 | .-x1-x2+z1+z2}.
}
Balestra and Varadharajan--Krishnakumar's or Baltagi's method is used if
code{inst.method="bvk"} or if code{inst.method="baltagi"}.
The Hausman and Taylor estimator is computed if code{model="ht"}.
}
an object of class c("plm","panelmodel")
.
A "plm"
object has the following elements : - coefficients
{the vector of coefficients,}
- residuals
{the vector of residuals,}
- fitted.values
{the vector of fitted.values,}
- vcov
{the covariance matrix of the coefficients,}
- df.residual
{degrees of freedom of the residuals,}
- model
{a data.frame containing the variables used for the
estimation,}
- call
{the call,}
- FE
{the fixed effects (only for within models),}
- alpha
{the overall intercept (only for within models),}
- theta
{the parameter of transformation (only for random effect
models),}
- sigma2
{the variance of the different elements of the error
(only for random effect models),}
- indexes
{a list containing the two index vectors (id and time).}
It has print
, summary
and print.summary
methods.
author{Yves Croissant}
references{
Amemiyia, T. (1971) The estimation of the variances in a
variance--components model, emph{International Economic Review}, bold{12},
pp.1--13.
Balestra, P. and Varadharajan--Krishnakumar, J. (1987) Full
information estimations of a system of simultaneous equations with
error components structure, emph{Econometric Theory}, bold{3}, pp.223--246.
Baltagi, B.H. (1981) Simultaneous equations with error components,
emph{Journal of econometrics}, bold{17}, pp.21--49.
Baltagi, B.H. (2001) emph{Econometric Analysis of Panel Data}. John
Wiley and sons. ltd.
Hausman, J.A. and Taylor W.E. (1981) Panel data and unobservable
individual effects, emph{Econometrica}, bold{49}, pp.1377--1398.
Nerlove, M. (1971) Further evidence on the estimation of dynamic
economic relations from a time--series of cross--sections,
emph{Econometrica}, bold{39}, pp.359--382.
Swamy, P.A.V.B. and Arora, S.S. (1972) The exact finite sample
properties of the estimators of coefficients in the error components
regression models, emph{Econometrica}, bold{40}, pp.261--275.
Wallace, T.D. and Hussain, A. (1969) The use of error components
models in combining cross section with time series data,
emph{Econometrica}, bold{37}(1), pp.55--72.
}
examples{
data("Produc", package="Ecdat")
zz <- plm(log(gsp)~log(pcap)+log(pc)+log(emp)+unemp, data=Produc, index=c("state","year"))
summary(zz)
}
keyword{regression}