Learn R Programming

plotBart (version 0.1.7)

plot_moderator_d_density: Plot the Conditional Average Treatment Effect conditional on a discrete moderator

Description

Plot the Conditional Average Treatment Effect split by a discrete moderating variable. This plot will provide a visual test of moderation by discrete variables.

Usage

plot_moderator_d_density(
  .model,
  moderator,
  .alpha = 0.7,
  facet = FALSE,
  .ncol = 1
)

Arguments

.model

a model produced by `bartCause::bartc()`

moderator

the moderator as a vector

.alpha

transparency value [0, 1]

facet

TRUE/FALSE. Create panel plots of each moderator level?

.ncol

number of columns to use when faceting

Value

ggplot object

Examples

Run this code
# NOT RUN {
data(lalonde)
confounders <- c('age', 'educ', 'black', 'hisp', 'married', 'nodegr')
model_results <- bartCause::bartc(
 response = lalonde[['re78']],
 treatment = lalonde[['treat']],
 confounders = as.matrix(lalonde[, confounders]),
 estimand = 'ate',
 commonSuprule = 'none'
)
plot_moderator_d_density(model_results, lalonde$educ)
# }

Run the code above in your browser using DataLab