Learn R Programming

plotKML (version 0.2-4)

LST: Time series of MODIS LST images

Description

LST contains a spatial sub-sample (Istra region in Croatia) of 46 time series of MODIS LST images (estimated Land Surface Temperature in degrees C) at 1 km resolution. The temporal support size of these images is 8-days.

Usage

data(LST)

Arguments

encoding

latin1

References

  • Hengl, T., Heuvelink, G.B.M., Percec Tadic, M., Pebesma, E., (2011)http://dx.doi.org/10.1007/s00704-011-0464-2{Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images}. Theoretical and Applied Climatology, 107(1-2): 265-277.
  • MODIS products (https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/)

Examples

Run this code
data(LST)
gridded(LST) <- ~x+y
proj4string(LST) <- CRS("+proj=utm +zone=33 +datum=WGS84 +units=m")
# get the dates from the file names:
dates <- sapply(strsplit(names(LST), "LST"), function(x){x[[2]]})
LST <- brick(LST)
LST@title = "Time series of MODIS Land Surface Temperature (8-day mosaics) images"
LST <- setZ(LST, format(as.Date(dates, "%Y_%m_%d"), "%Y-%m-%dT%H:%M:%SZ"))
data(SAGA_pal)
# plot MODIS images in Google Earth:
LST_ll <- reproject(LST)  # reprojecting rasters takes few minutes!
# copy the dates:
LST_ll <- setZ(LST_ll, getZ(LST))
# KML plot with block temporal support of 8 days:
kml(LST_ll, colour_scale=SAGA_pal[[1]], dtime=8*24*60^2)

Run the code above in your browser using DataLab