Last chance! 50% off unlimited learning
Sale ends in
This function uses rasterImage
to
indicate which points in the surface are not significantly different from
zero. Note that the shape of these non-significant regions depends on the
number of data points (often specified with n.grid
).
plot_signifArea(data, view, predictor = NULL, valCI, col = 1, alpha = 0.5, ...)
Data frame with plot data. A data frame needs to have a
column with x values, a column with y values (specified in view
),
a column with z values (predictor
), and one or two columns with
CI values (valCI
).
A vector of length 2 with the names or numbers of the columns to plot on the x axis and y axis respectively.
The name of the column in the data frame
data
that provides the z-values. If data contains more than one
column besides the x- and y-values, the predictor
should be provided.
The name of the column in the data frame
data
that provides the CI-values. Alternatively,
two column names can be provided for the lower and upper CI respectively.
Color for the nonsignificant areas.
Level of transparency, number between 0 (transparent) and 1 (no transparency)
Optional parameters for rasterImage
# NOT RUN {
# From the package graphics, see help(image):
x <- 10*(1:nrow(volcano))
y <- 10*(1:ncol(volcano))
tmp <- data.frame(value = (as.vector(volcano) - 120),
x = 10*rep(1:nrow(volcano), ncol(volcano)),
y = 10*rep(1:ncol(volcano), each=nrow(volcano)),
CI = rep(20, nrow(volcano)*ncol(volcano)))
plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano')
plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI')
# change color:
plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano')
plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI',
col='red')
# or completely remove 'nonsignificant' area:
plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI',
col='white', alpha=1)
# }
Run the code above in your browser using DataLab