
Last chance! 50% off unlimited learning
Sale ends in
PLS_lm
for cross validation purposes either on complete or incomplete datasets.PLS_lm_wvc(dataY, dataX, nt = 2, dataPredictY = dataX, modele = "pls", scaleX = TRUE, scaleY = NULL, keepcoeffs = FALSE, keepstd.coeffs=FALSE, tol_Xi = 10^(-12))
"pls"
available for this fonction.modele="pls"
and should be for glms pls.dataX
. It defaults to $10^{-12}$nrow(dataPredictY) * nt
matrix of the predicted valuescoeffs
keepcoeffs=TRUE
.
ncol(dataX) * 1
matrix of the coefficients of the the eXplanatory variablesPLS_lm_kfoldcv
in order to perform cross validation either on complete or incomplete datasets.PLS_lm
for more detailed results, PLS_lm_kfoldcv
for cross validating models and PLS_glm_wvc
for the same function dedicated to plsRglm modelsdata(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
PLS_lm_wvc(dataY=yCornell,dataX=XCornell,nt=3,dataPredictY=XCornell[1,])
PLS_lm_wvc(dataY=yCornell[-c(1,2)],dataX=XCornell[-c(1,2),],nt=3,dataPredictY=XCornell[c(1,2),])
PLS_lm_wvc(dataY=yCornell[-c(1,2)],dataX=XCornell[-c(1,2),],nt=3,dataPredictY=XCornell[c(1,2),],keepcoeffs=TRUE)
rm("XCornell","yCornell")
## With an incomplete dataset (X[1,2] is NA)
data(pine)
ypine <- pine[,11]
data(XpineNAX21)
PLS_lm_wvc(dataY=log(ypine)[-1],dataX=XpineNAX21[-1,],nt=3)
PLS_lm_wvc(dataY=log(ypine)[-1],dataX=XpineNAX21[-1,],nt=3,dataPredictY=XpineNAX21[1,])
PLS_lm_wvc(dataY=log(ypine)[-2],dataX=XpineNAX21[-2,],nt=3,dataPredictY=XpineNAX21[2,])
PLS_lm_wvc(dataY=log(ypine),dataX=XpineNAX21,nt=3)
rm("XpineNAX21","ypine")
Run the code above in your browser using DataLab