data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
# Lazraq-Cl�roux PLS ordinary bootstrap
set.seed(250)
Cornell.boot <- bootpls(plsR(yCornell,XCornell,3), sim="ordinary", stype="i", R=250)
boot::boot.array(Cornell.boot, indices=TRUE)
# Graph similar to the one of Bastien et al. in CSDA 2005
boxplot(as.vector(Cornell.boot$t[,-1])~factor(rep(1:7,rep(250,7))), main="Bootstrap distributions of standardised bj (j = 1, ..., 7).")
points(c(1:7),Cornell.boot$t0[-1],col="red",pch=19)
# Using the boxplots.bootpls function
boxplots.bootpls(Cornell.boot,indices=2:8)
# Confidence intervals plotting
confints.bootpls(Cornell.boot,indices=2:8)
plots.confints.bootpls(confints.bootpls(Cornell.boot,indices=2:8))
library(boot)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=2)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=3)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=4)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=5)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=6)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=7)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=8)
plot(Cornell.boot,index=2)
boot::jack.after.boot(Cornell.boot, index=2, useJ=TRUE, nt=3)
plot(Cornell.boot,index=2,jack=TRUE)
car::data.ellipse(Cornell.boot$t[,2], Cornell.boot$t[,3], cex=.3, levels=c(.5, .95, .99), robust=T)
rm(Cornell.boot)
# PLS balanced bootstrap
set.seed(225)
Cornell.boot <- bootpls(plsR(yCornell,XCornell,3), sim="balanced", stype="i", R=250)
boot::boot.array(Cornell.boot, indices=TRUE)
# Graph similar to the one of Bastien et al. in CSDA 2005
boxplot(as.vector(Cornell.boot$t[,-1])~factor(rep(1:7,rep(250,7))), main="Bootstrap distributions of standardised bj (j = 1, ..., 7).")
points(c(1:7),Cornell.boot$t0[-1],col="red",pch=19)
# Using the boxplots.bootpls function
boxplots.bootpls(Cornell.boot,indices=2:8)
# Confidence intervals plotting
confints.bootpls(Cornell.boot,indices=2:8)
plots.confints.bootpls(confints.bootpls(Cornell.boot,indices=2:8))
library(boot)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=2)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=3)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=4)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=5)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=6)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=7)
boot::boot.ci(Cornell.boot, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=8)
plot(Cornell.boot,index=2)
boot::jack.after.boot(Cornell.boot, index=2, useJ=TRUE, nt=3)
plot(Cornell.boot,index=2,jack=TRUE)
rm(Cornell.boot)
# PLS permutation bootstrap
set.seed(500)
Cornell.boot <- bootpls(plsR(yCornell,XCornell,3), sim="permutation", stype="i", R=1000)
boot::boot.array(Cornell.boot, indices=TRUE)
# Graph of bootstrap distributions
boxplot(as.vector(Cornell.boot$t[,-1])~factor(rep(1:7,rep(1000,7))),main="Bootstrap distributions of standardised bj (j = 1, ..., 7).")
points(c(1:7),Cornell.boot$t0[-1],col="red",pch=19)
# Using the boxplots.bootpls function
boxplots.bootpls(Cornell.boot,indices=2:8)
library(boot)
plot(Cornell.boot,index=2)
qqnorm(Cornell.boot$t[,2],ylim=c(-1,1))
abline(h=Cornell.boot$t0[2],lty=2)
(sum(abs(Cornell.boot$t[,2])>=abs(Cornell.boot$t0[2]))+1)/(length(Cornell.boot$t[,2])+1)
rm(Cornell.boot)
Run the code above in your browser using DataLab