This function computes information criteria for existing plsR model using Degrees of Freedom estimation.
Usage
infcrit.dof(modplsR, naive = FALSE)
Arguments
modplsR
A plsR model i.e. an object returned by one of the functions plsR, plsRmodel.default, plsRmodel.formula, PLS_lm or PLS_lm_formula.
naive
A boolean.
Value
matrixAIC, BIC and gmdl values or NULL.
Details
If naive=FALSE returns AIC, BIC and gmdl values for estimated and naive degrees of freedom. If naive=TRUE returns NULL.
References
M. Hansen, B. Yu,
Model Selection and Minimum Descripion Length Principle,
Journal of the American Statistical Association, 96 (2001) 746-774.
N. Kraemer, M. Sugiyama,
The Degrees of Freedom of Partial Least Squares Regression.
Preprint (2010).
http://arxiv.org/abs/1002.4112.
N. Kraemer, M.L. Braun,
Kernelizing PLS, Degrees of Freedom, and Efficient Model Selection,
Proceedings of the 24th International Conference on Machine Learning, Omni Press, (2007) 441-448.
See Also
plsR.dof for degrees of freedom computation and infcrit.dof for computing information criteria directly from a previously fitted plsR model.