data(Cornell)
PLS_lm_formula(Y~.,data=Cornell,nt=10)$InfCrit
PLS_lm_formula(Y~.,data=Cornell,nt=10,typeVC="standard")$CVinfos
PLS_lm_formula(Y~.,data=Cornell,nt=6)$AIC
PLS_lm_formula(Y~.,data=Cornell,nt=6)$AIC.std
modpls <- PLS_lm_formula(Y~.,data=Cornell,nt=6,pvals.expli =TRUE)
modpls2 <- PLS_lm_formula(Y~.,data=Cornell,nt=6,sparse=TRUE)
modpls3 <- PLS_lm_formula(Y~.,data=Cornell,nt=6,sparse=TRUE,sparseStop=FALSE)
data(aze_compl)
modpls <- PLS_lm_formula(y~.,data=aze_compl,nt=10,MClassed=TRUE)
modpls$AIC
modpls$AIC.std
modpls$MissClassed
modpls$Probs
modpls$Probs.trc
modpls$Probs-modpls$Probs.trc
modpls$InfCrit
PLS_lm_formula(y~.,data=aze_compl,nt=10)$InfCrit
PLS_lm_formula(y~.,data=aze_compl,nt=10,typeVC="standard")$CVinfos
PLS_lm_formula(y~.,data=aze_compl,nt=10,typeVC="standard",MClassed=TRUE)$CVinfos
rm(list=c("modpls"))
dimX <- 24
Astar <- 2
simul_data_UniYX(dimX,Astar)
dataAstar2 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ydataAstar2 <- dataAstar2[,1]
XdataAstar2 <- dataAstar2[,2:(dimX+1)]
ysimbin1 <- dicho(ydataAstar2)
Xsimbin1 <- dicho(XdataAstar2)
PLS_lm_formula(ysimbin1~Xsimbin1,nt=10,MClassed=TRUE)$Probs
PLS_lm_formula(ysimbin1~Xsimbin1,nt=10,MClassed=TRUE)$Probs.trc
PLS_lm_formula(ysimbin1~Xsimbin1,nt=10,MClassed=TRUE)$MissClassed
PLS_lm_formula(ysimbin1~Xsimbin1,nt=10,typeVC="standard",MClassed=TRUE)$CVinfos
PLS_lm_formula(ysimbin1~XdataAstar2,nt=10,typeVC="standard",MClassed=TRUE)$CVinfos
PLS_lm_formula(ydataAstar2~XdataAstar2,nt=10,typeVC="standard")$CVinfos
rm(list=c("dimX","Astar","dataAstar2","ysimbin1","Xsimbin1","ydataAstar2","XdataAstar2"))
dimX <- 6
Astar <- 4
dataAstar4 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ydataAstar4 <- dataAstar4[,1]
XdataAstar4 <- dataAstar4[,2:(dimX+1)]
modpls <- PLS_lm_formula(ydataAstar4~XdataAstar4,nt=10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
str(modpls)
rm(list=c("dimX","Astar","dataAstar4","modpls","ydataAstar4","XdataAstar4"))
dimX <- 24
Astar <- 2
dataAstar2 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
ydataAstar2 <- dataAstar2[,1]
XdataAstar2 <- dataAstar2[,2:(dimX+1)]
modpls <- PLS_lm_formula(ydataAstar2~XdataAstar2,nt=10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar2","modpls","ydataAstar2","XdataAstar2"))
# Comparing the results with the plspm package and SIMCA results in Tenenhaus's book
library(plspm)
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
plsreg1(x=XCornell,y=as.vector(yCornell),nc=3)$coeffs
PLS_lm_formula(Y~.,data=Cornell,nt=3)$uscores
PLS_lm_formula(Y~.,data=Cornell,nt=3)$pp
PLS_lm_formula(Y~.,data=Cornell,nt=3)$Coeffs
plsreg1(x=XCornell,y=as.vector(yCornell),nc=4,cv=TRUE)
PLS_lm_formula(Y~.,data=Cornell,nt=4,typeVC="standard")$press.ind
PLS_lm_formula(Y~.,data=Cornell,nt=4,typeVC="standard")$press.tot
PLS_lm_formula(Y~.,data=Cornell,nt=4,typeVC="standard")$CVinfos
plsreg1(x=XCornell,y=as.vector(yCornell),nc=4,cv=TRUE)$Q2
data(pine)
PLS_lm_formula(log(x11)~.,data=pine,nt=4)$Std.Coeffs
plsreg1(x=Xpine,y=log(as.vector(ypine)),nc=4)$std.coef
PLS_lm_formula(log(x11)~.,data=pine,nt=4)$Coeffs
plsreg1(x=Xpine,y=log(as.vector(ypine)),nc=4)$coeffs
PLS_lm_formula(log(x11)~.,data=pine,nt=1)$Std.Coeffs
PLS_lm_formula(log(x11)~.,data=pine,nt=1)$Coeffs
plsreg1(x=Xpine,y=log(as.vector(ypine)),nc=10)$Q2
PLS_lm_formula(log(x11)~.,data=pine,nt=10,typeVC="standard")$CVinfos
plsreg1(x=Xpine,y=log(as.vector(ypine)),nc=4,cv=TRUE)$Q2
data(pine_full)
PLS_lm_formula(log(x11)~.,data=pine_full,1)$Std.Coeffs
PLS_lm_formula(log(x11)~.,data=pine_full,1)$Coeffs
plsreg1(x=Xpine_full,y=log(as.vector(ypine_full)),nc=4)$coeffs
pineNAX21 <- pine
pineNAX21[1,2] <- NA
PLS_lm_formula(log(x11)~.,data=pineNAX21,nt=4)$Std.Coeffs
PLS_lm_formula(log(x11)~.,data=pineNAX21,nt=4)$YChapeau[1,]
PLS_lm_formula(log(x11)~.,data=pine,nt=4)$YChapeau[1,]
PLS_lm_formula(log(x11)~.,data=pineNAX21,nt=4)$CoeffC
plsreg1(x=XpineNAX21,y=as.vector(log(ypine)),nc=4,cv=TRUE)
PLS_lm_formula(log(x11)~.,data=pineNAX21,nt=2,dataPredictY=pineNAX21[1,-11])$ValsPredictY
PLS_lm_formula(log(x11)~.,data=pine,10,typeVC="none")$InfCrit
PLS_lm_formula(log(x11)~.,data=pine,10,typeVC="standard")$CVinfos
PLS_lm_formula(log(x11)~.,data=pine,10,typeVC="adaptative")$CVinfos
PLS_lm_formula(log(x11)~.,data=pine,10,typeVC="missingdata")$CVinfos
PLS_lm_formula(log(x11)~.,data=pineNAX21,10,typeVC="none")$InfCrit
PLS_lm_formula(log(x11)~.,data=pineNAX21,10,typeVC="standard")$CVinfos
PLS_lm_formula(log(x11)~.,data=pineNAX21,10,typeVC="adaptative")$CVinfos
PLS_lm_formula(log(x11)~.,data=pineNAX21,10,typeVC="missingdata")$CVinfos
PLS_lm_formula(log(x11)~.,data=pineNAX21,4,EstimXNA=TRUE)$XChapeau
PLS_lm_formula(log(x11)~.,data=pineNAX21,4,EstimXNA=TRUE)$XChapeauNA
rm(list=c("XCornell","yCornell","XpineNAX21"))
dimX <- 24
Astar <- 3
dataAstar3 <- t(replicate(200,simul_data_UniYX(dimX,Astar)))
ydataAstar3 <- dataAstar3[,1]
XdataAstar3 <- dataAstar3[,2:(dimX+1)]
modpls <- PLS_lm_formula(ydataAstar3~XdataAstar3,,10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar3","modpls","ydataAstar3","XdataAstar3"))
dimX <- 24
Astar <- 4
dataAstar4 <- t(replicate(200,simul_data_UniYX(dimX,Astar)))
ydataAstar4 <- dataAstar4[,1]
XdataAstar4 <- dataAstar4[,2:(dimX+1)]
modpls <- PLS_lm_formula(ydataAstar4~XdataAstar4,,10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar4","modpls","ydataAstar4","XdataAstar4"))
dimX <- 24
Astar <- 5
dataAstar5 <- t(replicate(200,simul_data_UniYX(dimX,Astar)))
ydataAstar5 <- dataAstar5[,1]
XdataAstar5 <- dataAstar5[,2:(dimX+1)]
modpls <- PLS_lm_formula(ydataAstar5~XdataAstar5,nt=10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar5","modpls","ydataAstar5","XdataAstar5"))
dimX <- 24
Astar <- 6
dataAstar6 <- t(replicate(200,simul_data_UniYX(dimX,Astar)))
ydataAstar6 <- dataAstar6[,1]
XdataAstar6 <- dataAstar6[,2:(dimX+1)]
modpls <- PLS_lm_formula(ydataAstar6~XdataAstar6,nt=10,typeVC="standard")
modpls$computed_nt
modpls$CVinfos
rm(list=c("dimX","Astar","dataAstar6","modpls","ydataAstar6","XdataAstar6"))
Run the code above in your browser using DataLab