This function computes the Degrees of Freedom using the Krylov representation of PLS and other quantities that are used to get information criteria values. For the time present, it only works with complete datasets.
Usage
plsR.dof(modplsR, naive = FALSE)
Arguments
modplsR
A plsR model i.e. an object returned by one of the functions plsR, plsRmodel.default, plsRmodel.formula, PLS_lm or PLS_lm_formula.
naive
A boolean.
Value
DoF
Degrees of Freedom
sigmahat
Estimates of dispersion
Yhat
Predicted values
yhat
Square Euclidean norms of the predicted values
RSS
Residual Sums of Squares
Details
If naive=FALSE returns values for estimated degrees of freedom and error dispersion. If naive=TRUE returns returns values for naive degrees of freedom and error dispersion.
The original code from Nicole Kraemer and Mikio L. Braun was unable to handle models with only one component.
References
N. Kraemer, M. Sugiyama. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association, 106(494), 697-705.
N. Kraemer, M. Sugiyama, M.L. Braun. (2009). Lanczos Approximations for the Speedup of Kernel Partial Least Squares Regression, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), 272-279.
See Also
aic.dof and infcrit.dof for computing information criteria directly from a previously fitted plsR model.