Learn R Programming

plsRglm (version 1.3.0)

kfolds2CVinfos_lm: Extracts and computes information criteria and fits statistics for k-fold cross validated partial least squares models

Description

This function extracts and computes information criteria and fits statistics for k-fold cross validated partial least squares models for both formula or classic specifications of the model.

Usage

kfolds2CVinfos_lm(pls_kfolds, MClassed = FALSE, verbose = TRUE)

Arguments

pls_kfolds

an object computed using PLS_lm_kfoldcv

MClassed

should number of miss classed be computed

verbose

should infos be displayed ?

Value

list

table of fit statistics for first group partition

list()

list

table of fit statistics for last group partition

Details

The Mclassed option should only set to TRUE if the response is binary.

References

Nicolas Meyer, Myriam Maumy-Bertrand et Fr<U+00E9>d<U+00E9>ric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47

See Also

kfolds2coeff, kfolds2Pressind, kfolds2Press, kfolds2Mclassedind and kfolds2Mclassed to extract and transforms results from k-fold cross-validation.

Examples

Run this code
# NOT RUN {
data(Cornell)
summary(cv.plsR(Y~.,data=Cornell,nt=10,K=6,verbose=FALSE))


data(pine)
summary(cv.plsR(x11~.,data=pine,nt=10,NK=3,verbose=FALSE),verbose=FALSE)
data(pineNAX21)
summary(cv.plsR(x11~.,data=pineNAX21,nt=10,NK=3,
verbose=FALSE),verbose=FALSE)


data(aze_compl)
summary(cv.plsR(y~.,data=aze_compl,nt=10,K=8,NK=3,
verbose=FALSE),MClassed=TRUE,verbose=FALSE)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab