
Last chance! 50% off unlimited learning
Sale ends in
A soft-thresholding step in PLS algorithm (ST-PLS) based on ideas from the nearest shrunken centroid method.
stpls(..., method = c("stpls", "model.frame"))
Returns an object of class mvrV, simliar to to mvr object of the pls package.
arguments passed on to mvrV
).
choice between the default stpls
and alternative model.frame
.
Solve Sæbø, Tahir Mehmood, Kristian Hovde Liland.
The ST-PLS approach is more or less identical to the Sparse-PLS presented independently by Lè Cao et al. This implementation is an expansion of code from the pls package.
S. Sæbø, T. Almøy, J. Aarøe, A.H. Aastveit, ST-PLS: a multi-dimensional nearest shrunken centroid type classifier via pls, Journal of Chemometrics 20 (2007) 54-62.
VIP
(SR/sMC/LW/RC), filterPLSR
, shaving
,
stpls
, truncation
,
bve_pls
, ga_pls
, ipw_pls
, mcuve_pls
,
rep_pls
, spa_pls
,
lda_from_pls
, lda_from_pls_cv
, setDA
.
data(yarn, package = "pls")
st <- stpls(density~NIR, ncomp=5, shrink=c(0.1,0.2), validation="CV", data=yarn)
summary(st)
Run the code above in your browser using DataLab