if (FALSE) {
### load plsgenomics library
library(plsgenomics)
### generating data
n <- 100
p <- 100
sample1 <- sample.bin(n=n, p=p, kstar=20, lstar=2,
beta.min=0.25, beta.max=0.75,
mean.H=0.2, sigma.H=10, sigma.F=5)
X <- sample1$X
Y <- sample1$Y
### splitting between learning and testing set
index.train <- sort(sample(1:n, size=round(0.7*n)))
index.test <- (1:n)[-index.train]
Xtrain <- X[index.train,]
Ytrain <- Y[index.train,]
Xtest <- X[index.test,]
Ytest <- Y[index.test,]
### fitting the model, and predicting new observations
model1 <- logit.spls(Xtrain=Xtrain, Ytrain=Ytrain, lambda.ridge=2,
lambda.l1=0.5, ncomp=2, Xtest=Xtest, adapt=TRUE,
maxIter=100, svd.decompose=TRUE)
str(model1)
### prediction error rate
sum(model1$hatYtest!=Ytest) / length(index.test)
}
Run the code above in your browser using DataLab