
Last chance! 50% off unlimited learning
Sale ends in
ddply(.data, .variables, .fun, ..., .progress="none",
.drop=TRUE, .parallel=FALSE)
.fun
create_progress_bar
TRUE
, apply function in parallel, using parallel
backend provided by foreach.fun
to each piece, and then combine the pieces
into a single data structure. This function splits data
frames by variables and combines the result into a data
frame. If there are no results, then this function will
return a data frame with zero rows and columns
(data.frame()
). The most unambiguous behaviour is achieved when
.fun
returns a data frame - in that case pieces
will be combined with rbind.fill
. If
.fun
returns an atomic vector of fixed length, it
will be rbind
ed together and converted to a data
frame. Any other values will result in an error.
ddply(baseball, .(year), "nrow")
ddply(baseball, .(lg), c("nrow", "ncol"))
rbi <- ddply(baseball, .(year), summarise,
mean_rbi = mean(rbi, na.rm = TRUE))
with(rbi, plot(year, mean_rbi, type="l"))
base2 <- ddply(baseball, .(id), transform,
career_year = year - min(year) + 1
)
Run the code above in your browser using DataLab