if (FALSE) { # requireNamespace("pmartRdata", quietly = TRUE)
library(pmartRdata)
# Combine metabolomics and protein object into multidata, both must be log2
# and normalized.
mymetab <- edata_transform(omicsData = metab_object, data_scale = "log2")
mymetab <- normalize_global(omicsData = mymetab, subset_fn = "all",
norm_fn = "median", apply_norm = TRUE)
mypro <- pro_object
# Combine without specifically supplying f_meta, either directly, or as one
# of the f_datas in any object.
mymultidata <- as.multiData(mymetab, mypro, auto_fmeta = TRUE, sample_intersect = TRUE)
# Manually supply an f_meta
f_meta <- data.frame(
"Proteins" = mypro$f_data$SampleID[match(mymetab$f_data$SampleID, mypro$f_data$SampleID)],
"Metabolites" = mymetab$f_data$SampleID,
"Condition" = mymetab$f_data$Phenotype[match(mymetab$f_data$SampleID, mypro$f_data$SampleID)]
)
mymultidata <- as.multiData(mymetab, mypro, f_meta = f_meta)
# remove samples that are not common across all data.
mymultidata <- as.multiData(mymetab, mypro, f_meta = f_meta, sample_intersect = TRUE)
}
Run the code above in your browser using DataLab