if (FALSE) { # requireNamespace("pmartRdata", quietly = TRUE)
library(pmartRdata)
obj_1 <- lipid_neg_object
obj_2 <- lipid_pos_object
# de-duplicate any duplicate edata identifiers
all(obj_2$e_data[, get_edata_cname(obj_2)] == obj_2$e_meta[, get_edata_cname(obj_2)])
obj_2$e_data[, get_edata_cname(obj_2)] <- paste0("obj_2_", obj_2$e_data[, get_edata_cname(obj_2)])
obj_2$e_meta[, get_edata_cname(obj_2)] <- obj_2$e_data[, get_edata_cname(obj_2)]
combine_object <- combine_lipidData(obj_1 = obj_1, obj_2 = obj_2)
# preprocess and group the data and keep filters/grouping structure
obj_1 <- edata_transform(omicsData = obj_1, data_scale = "log2")
obj_1 <- normalize_global(omicsData = obj_1, subset_fn = "all",
norm_fn = "median", apply_norm = TRUE)
obj_2 <- edata_transform(omicsData = obj_2, data_scale = "log2")
obj_2 <- normalize_global(omicsData = obj_2, subset_fn = "all",
norm_fn = "median", apply_norm = TRUE)
obj_1 <- group_designation(omicsData = obj_1, main_effects = "Virus")
obj_2 <- group_designation(omicsData = obj_2, main_effects = "Virus")
obj_1 <- applyFilt(filter_object = molecule_filter(omicsData = obj_1),
omicsData = obj_1, min_num = 2)
obj_2 <- applyFilt(filter_object = cv_filter(omicsData = obj_2), obj_2, cv_thresh = 60)
combine_object_later <- combine_lipidData(
obj_1 = obj_1,
obj_2 = obj_2,
retain_groups = TRUE,
retain_filters = TRUE
)
}
Run the code above in your browser using DataLab