# Train a support vector machine to perform classification.
require(kernlab)
model <- ksvm(Species ~ ., data=iris)
p <- pmml(model, dataset=iris)
# To make predictions using this model, the new data must be given; without it and by
# simply using the "predict" function without an input dataset, the predicted value
# will not be the true predicted value. It will be a raw predicted value which must be
# post-processed to get the final correct predicted value
#
# Make predictions using same iris input data. Even though it is the same dataset, it
# must be provided as an input parameter for the "predict" function.
predict(model,iris[,1:4])
# Save to file.
saveXML(p, "iris_svm.xml")
Run the code above in your browser using DataLab