Update the subject specific scaling parameter according to procedures outlined in P. H. Garthwaite, Y. Fan & S. A. Sisson (2016) Adaptive optimal scaling of Metropolis–Hastings algorithms using the Robbins–Monro process, Communications in Statistics - Theory and Methods, 45:17, 5098-5111, DOI: 10.1080/03610926.2014.936562
update_epsilon(epsilon, acc, p, i, d, alpha)A vector with the new subject specific epsilon values
The scaling parameter for all subjects
A boolean vector, TRUE if current sample != last sample
The target sample acceptance rate (0-1)
The current iteration for sampling
The number of parameters for the model
A hyperparameter for the epsilon tuning