Learn R Programming

pmxNODE (version 0.1.0)

NNbsv: Change a population Neural Network model to a model with between subject variability

Description

This only changes the Neural Network model to add between subject variability. It assumes the following parameter structure

Usage

NNbsv(ui, val = 0.1, str = "%s <- l%s*exp(eta.%s)", warn = FALSE)

Value

modified model with between subject variabilities added for neural-network components.

Arguments

ui

-- nlmixr2 fit or rxode2 model function to modify and add between subject variabilities to the neural network.

val

-- initial value for the added etas

str

-- String used to construct the eta expressions. The default is " to the `eta` variable. If desired you can try different forms for the between subject variables.

warn

-- boolean; Should you warn or error if the element is not a nlmixr2 fit

Author

Matthew L. Fidler

Examples

Run this code
if (FALSE) {
f_ode_pop <- function(){
  ini({
    lV <- 1
    prop.err <- 0.1
  })
  model({
    V <- lV
    d/dt(centr)  =  NN(1, state=centr,min_init=0,max_init=300)
    cp = centr / V
    cp ~ prop(prop.err)
  })
}

f_ode_pop() %>% NNbsv(.2, warn=TRUE)
}

Run the code above in your browser using DataLab