## Not run:
# ## Examples below should take about 1-2 minutes.
#
# # load simulated data set 'simul_binomial'
# data(simul_binomial)
# y <- simul_binomial$y
# N <- simul_binomial$N
# X <- as.matrix(simul_binomial[, -c(1, 2)])
#
# # Bayesian variable selection for simulated data set
# m1 <- logitBvs(y = y, N = N, X = X)
#
# # print, summarize and plot results
# print(m1)
# summary(m1)
# plot(m1)
#
# # MCMC sampling without BVS with specific MCMC and prior settings
# m2 <- logitBvs(y = y, N = N, X = X, prior = list(slab = "Normal"),
# mcmc = list(M = 4000, burnin = 1000, thin = 5),
# BVS = FALSE)
# print(m2)
# summary(m2)
# plot(m2, maxPlots = 4)
#
# # BVS with specification of regression effects subject to selection
# m3 <- logitBvs(y = y, N = N, X = X, mcmc = list(M = 4000, burnin = 1000),
# model = list(deltafix = c(1, 1, 1, 0, 0, 0, 1, 0, 0)))
# print(m3)
# summary(m3)
# plot(m3, burnin = FALSE, maxPlots = 4)
# plot(m3, type = "acf", maxPlots = 4)
# ## End(Not run)
Run the code above in your browser using DataLab