## Not run:
# ## Examples below should take about 1-2 minutes.
#
# ## ------ (use simul_pois1) ------
# # load simulated data set 'simul_pois1'
# data(simul_pois1)
# y <- simul_pois1$y
# X <- as.matrix(simul_pois1[, -1])
#
# # Bayesian variable selection for simulated data set
# m1 <- poissonBvs(y = y, X = X)
#
# # print, summarize and plot results
# print(m1)
# summary(m1)
# plot(m1, maxPlots = 4)
# plot(m1, burnin = FALSE, thin = FALSE, maxPlots = 4)
# plot(m1, type = "acf")
#
# # MCMC sampling without BVS with specific MCMC and prior settings
# m2 <- poissonBvs(y = y, X = X, prior = list(slab = "Normal"),
# mcmc = list(M = 6000, thin = 10), BVS = FALSE)
# print(m2)
# summary(m2, IAT = TRUE)
# plot(m2)
# # show traceplots disregarding thinning
# plot(m2, thin = FALSE)
#
# # specification of an overdispersed Poisson model with observation-specific
# # (normal) random intercept
# cID <- seq_along(y)
# m3 <- poissonBvs(y = y, X = X, model = list(ri = TRUE, clusterID = cID))
#
# # print, summarize and plot results
# print(m3)
# summary(m3)
# # note that variance selection of the random intercept indicates that
# # overdispersion is not present in the data
# plot(m3, burnin = FALSE, thin = FALSE)
#
# ## ------ (use simul_pois2) ------
# # load simulated data set 'simul_pois2'
# data(simul_pois2)
# y <- simul_pois2$y
# X <- as.matrix(simul_pois2[, -c(1,2)])
# cID <- simul_pois2$cID
#
# # BVS for a Poisson model with cluster-specific random intercept
# m4 <- poissonBvs(y = y, X = X, model = list(ri = TRUE, clusterID = cID),
# mcmc = list(M = 4000, burnin = 2000))
# print(m4)
# summary(m4)
# plot(m4)
#
# # similar to m4, but without variance selection of the random intercept term
# model <- list(gammafix = 1, ri = 1, clusterID = cID)
# m5 <- poissonBvs(y = y, X = X, model = model, mcmc = list(M = 4000, thin = 5))
# print(m5)
# summary(m5)
# plot(m5)
#
# # MCMC sampling without BVS for clustered observations
# m6 <- poissonBvs(y = y, X = X, model = list(ri = 1, clusterID = cID),
# BVS = FALSE)
# print(m6)
# summary(m6)
# plot(m6, maxPlots = 4)
# ## End(Not run)
Run the code above in your browser using DataLab