control_earl sets the default control arguments
for efficient augmentation and relaxation learning , type = "earl".
The arguments are passed directly to DynTxRegime::earl() if not
specified otherwise.
control_earl(
moPropen,
moMain,
moCont,
regime,
iter = 0L,
fSet = NULL,
lambdas = 0.5,
cvFolds = 0L,
surrogate = "hinge",
kernel = "linear",
kparam = NULL,
verbose = 0L
)list of (default) control arguments.
Propensity model of class "ModelObj", see modelObj::modelObj.
Main effects outcome model of class "ModelObj".
Contrast outcome model of class "ModelObj".
An object of class formula specifying the design of the policy/regime.
Maximum number of iterations for outcome regression.
A function or NULL defining subset structure.
Numeric or numeric vector. Penalty parameter.
Integer. Number of folds for cross-validation of the parameters.
The surrogate 0-1 loss function. The options are
"logit", "exp", "hinge", "sqhinge", "huber".
The options are "linear", "poly", "radial".
Numeric. Kernel parameter
Integer.