control_rwl sets the default control arguments
for residual learning , type = "rwl".
The arguments are passed directly to DynTxRegime::rwl() if not
specified otherwise.
control_rwl(
moPropen,
moMain,
regime,
fSet = NULL,
lambdas = 2,
cvFolds = 0L,
kernel = "linear",
kparam = NULL,
responseType = "continuous",
verbose = 2L
)list of (default) control arguments.
Propensity model of class "ModelObj", see modelObj::modelObj.
Main effects outcome model of class "ModelObj".
An object of class formula specifying the design of the policy/regime.
A function or NULL defining subset structure.
Numeric or numeric vector. Penalty parameter.
Integer. Number of folds for cross-validation of the parameters.
"logit", "exp", "hinge", "sqhinge", "huber".
The options are "linear", "poly", "radial".
Numeric. Kernel parameter
Character string. Options are "continuous",
"binary", "count".
Integer.