Learn R Programming

polle (version 1.6.2)

control_rwl: Control arguments for Residual Weighted Learning

Description

control_rwl sets the default control arguments for residual learning , type = "rwl". The arguments are passed directly to DynTxRegime::rwl() if not specified otherwise.

Usage

control_rwl(
  moPropen,
  moMain,
  regime,
  fSet = NULL,
  lambdas = 2,
  cvFolds = 0L,
  kernel = "linear",
  kparam = NULL,
  responseType = "continuous",
  verbose = 2L
)

Value

list of (default) control arguments.

Arguments

moPropen

Propensity model of class "ModelObj", see modelObj::modelObj.

moMain

Main effects outcome model of class "ModelObj".

regime

An object of class formula specifying the design of the policy/regime.

fSet

A function or NULL defining subset structure.

lambdas

Numeric or numeric vector. Penalty parameter.

cvFolds

Integer. Number of folds for cross-validation of the parameters. "logit", "exp", "hinge", "sqhinge", "huber".

kernel

The options are "linear", "poly", "radial".

kparam

Numeric. Kernel parameter

responseType

Character string. Options are "continuous", "binary", "count".

verbose

Integer.