
Probability density function (doldlogspline
), distribution
function (poldlogspline
), quantiles
(qoldlogspline
), and random samples (roldlogspline
) from
a logspline density that was fitted using
the 1992 knot deletion algorithm (oldlogspline
).
The 1997 algorithm using knot
deletion and addition is available using the logspline
function.
doldlogspline(q, fit)
poldlogspline(q, fit)
qoldlogspline(p, fit)
roldlogspline(n, fit)
Densities (doldlogspline
), probabilities (poldlogspline
), quantiles (qoldlogspline
),
or a random sample (roldlogspline
)
from an oldlogspline
density that was fitted using
knot deletion.
vector of quantiles. Missing values (NAs) are allowed.
vector of probabilities. Missing values (NAs) are allowed.
sample size. If length(n)
is larger than 1, then
length(n)
random values are returned.
oldlogspline
object, typically the result of oldlogspline
.
Charles Kooperberg clk@fredhutch.org.
Elements of q
or p
that are missing will cause the
corresponding elements of the result to be missing.
Charles Kooperberg and Charles J. Stone. Logspline density estimation for censored data (1992). Journal of Computational and Graphical Statistics, 1, 301--328.
Charles J. Stone, Mark Hansen, Charles Kooperberg, and Young K. Truong. The use of polynomial splines and their tensor products in extended linear modeling (with discussion) (1997). Annals of Statistics, 25, 1371--1470.
logspline
,
oldlogspline
,
plot.oldlogspline
,
summary.oldlogspline
x <- rnorm(100)
fit <- oldlogspline(x)
qq <- qoldlogspline((1:99)/100, fit)
plot(qnorm((1:99)/100), qq) # qq plot of the fitted density
pp <- poldlogspline((-250:250)/100, fit)
plot((-250:250)/100, pp, type = "l")
lines((-250:250)/100, pnorm((-250:250)/100)) # asses the fit of the distribution
dd <- doldlogspline((-250:250)/100, fit)
plot((-250:250)/100, dd, type = "l")
lines((-250:250)/100, dnorm((-250:250)/100)) # asses the fit of the density
rr <- roldlogspline(100, fit) # random sample from fit
Run the code above in your browser using DataLab