# NOT RUN {
## expected segregation proportions heterogeneous parents
expected.segRatio(4)
expected.segRatio("Tetraploid")
expected.segRatio("Octa")
## expected segregation proportions homogeneous parents
expected.segRatio("Octa",type="heter")
## generate dominant markers for autotetraploids
a1 <- sim.autoMarkers(4,c(0.8,0.2))
print(a1)
plot(a1)
## generate crosses for different parental types
p2 <- sim.autoCross(4, dose.proportion=list(p01=c(0.7,0.3),
p10=c(0.7,0.3),p11=c(0.6,0.2,0.2)))
print(p2)
plot(p2)
## simulate and test some markers, printing out a summary table of
## no.s of correct marker dosages
a <- sim.autoMarkers(ploidy = 8, c(0.7,0.2,0.09,0.01),
type="hetero", n.markers=500,n.individuals=100)
a <- addMissing(a, 0.07) # make seven percent missing at random
at <- test.segRatio(a$seg.ratios, ploidy=8, type.parents="het",
method="bin")
print(addmargins(table(a$true.doses$dosage, at$dosage, exclude=NULL)))
# }
Run the code above in your browser using DataLab