Learn R Programming

polySegratioMM (version 0.6-2)

DistributionPlotBinomial: Distribution Plot

Description

Plots probability density function given the parameters. May be useful when investigating parameter choice for prior distributions.

Usage

DistributionPlotBinomial(size = 200, prob = 0.5,
xlab = "Number of Successes", ylab = "Probability Mass", signif.digits = 3,
main = paste("Binomial Distribution: n =", size, "p =",
signif(prob, digits = signif.digits)))

DistributionPlotGamma(shape = 1, rate = 1, length = 100, xlab = "x", ylab = "Density", main = bquote(paste("Gamma Distribution: ", alpha, "=", .(signif(shape, digits = signif.digits)), ",", beta, "=", .(signif(rate, digits = signif.digits)))), signif.digits = 3)

DistributionPlotNorm(mean = 0, sd = 1, length = 100, xlab = "x", ylab = "Density", main = bquote(paste("Normal Distribution: ", mu, "=", .(signif(mean, digits = signif.digits)), ",", sigma, "=", .(signif(sd, digits = signif.digits)))), signif.digits = 3)

Arguments

size
number of trials (Binomial)
prob
probability of success (Binomial)
shape
shape parameter. Must be strictly positive. (Gamma)
rate
an alternative way to specify the scale (Gamma)
mean
mean (Normal)
sd
standard deviation (Normal)
xlab
x-axis label
ylab
y-axis label
signif.digits
number of significant digits for default main title
main
title for plot
length
Number of points to use for obtaining a smooth curve

Value

  • None.

Details

Based on functions in package Rcmdr

See Also

Rcmdr Binomial Normal GammaDist

Examples

Run this code
## Binomial distribution
DistributionPlotBinomial()
DistributionPlotBinomial(size=20, prob=0.2)

## Gamma distribution
DistributionPlotGamma()

## Normal distribution
DistributionPlotNorm()

Run the code above in your browser using DataLab