Learn R Programming

polySegratioMM (version 0.6-2)

diagnosticsJagsMix: MCMC diagnostics for polyploid segregation ratio mixture models

Description

Produce and/or plot various diagnostic measures from coda package for Bayesian mixture models for assessing marker dosage in autopolyploids

Usage

diagnosticsJagsMix(mcmc.mixture, diagnostics = TRUE, plots = FALSE,
 index = -c( grep("T\\[",varnames(mcmc.mixture$mcmc.list)),
             grep("b\\[",varnames(mcmc.mixture$mcmc.list)) ),
 trace.plots = FALSE, auto.corrs = FALSE, density.plots = FALSE,
 xy.plots = FALSE, hpd.intervals = FALSE, hdp.prob = 0.95,
 return.results = FALSE)

Arguments

mcmc.mixture
Object of class segratioMCMC or runJagsWrapper after JAGS run produced by coda
diagnostics
if TRUE then print several coda dignostic tests
plots
if TRUE then produce several coda dignostic plots
index
index of parameters for disgnostic tests/plots (Default: mixture model (and random effects) parameters)
trace.plots
if TRUE plot mcmc traces (default: FALSE)
auto.corrs
if TRUE produce autocorrelations of mcmc's (default: FALSE)
density.plots
if TRUE plot parameter densities (default: FALSE)
xy.plots
if TRUE plot traces using 'lattice' (default: FALSE)
hpd.intervals
if TRUE print and return highest posterior density intervals for parameters specified by index
hdp.prob
probability for hpd.intervals
return.results
if TRUE return results as list

Value

  • If return.results is TRUE then a list is returned with components depending on various settings of arguments

concept

  • segregation ratio
  • dominant marker
  • autopolyploid

See Also

mcmc autocorr.diag raftery.diag geweke.diag gelman.diag trellisplots

Examples

Run this code
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <-  segregationRatios(a1$markers)
x <- setModel(3,8)

## fit simple model in one hit

x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
print(x.run)
diagnosticsJagsMix(x.run)
diagnosticsJagsMix(x.run, plot=TRUE)

Run the code above in your browser using DataLab