Learn R Programming

polySegratioMM (version 0.6-2)

setPriors: Set prior distributions for parameters of Bayesian mixture model for dosages

Description

May be used to automatically set up vague or strong priors or explicitly set them for Bayesian finite mixture model specified as an object of class modelSegratioMM using setModel

Usage

setPriors(model, type.prior = c("strong",
              "vague", "strong.tau","strong.s", "specified"),
mean.vague = 0.1, prec.vague = 0.1, A.vague = 0.1, B.vague = 0.1,
prec.strong=400, n.individuals=200, reffect.A = 44, reffect.B = 0.8,
M.sd = 0.025, STRONG.PREC=c(0.025, 0.975), UPPER = 0.995,  PREC.INT=0.2,
params = NULL, segRatio = NULL)

Arguments

model
object of class modelSegratioMM specifying model parameters, ploidy etc
type.prior
The type of prior required being one of strong, vague, strong.tau strong.s or specified. The first four prior types will automatically set prior distributions
mean.vague
The mean of Normal priors for a vague prior
prec.vague
The precision of Normal priors for a vague prior
A.vague
The shape parameter of the Gamma prior for the precision parameters for a vague prior
B.vague
The rate (scale) parameter of the Gamma prior for the precision parameters for a vague prior
prec.strong
Precision for Normal mean parameters when type.prior is strong. Note that on logit scale default is equivalent to having a 95%CI as +/- 0.1
n.individuals
Used for Binomial calculations to set prior precision parameters when type.prior is strong.
reffect.A
The shape parameter of the Gamma prior for the precision parameter of the random.effect for a vague prior
reffect.B
The rate (scale) parameter of the Gamma prior for the precision parameter of the random.effect for a vague prior
M.sd
Approximate standard deviation for the mean segregation ratios on raw probability scale - this is set to 0.025 which would give an approximate 95% interval of 0.1 for the segregation ratio
UPPER
Cutoff for guessing parameters on logit scale noting that logit(1) is undefined
STRONG.PREC
Interval on raw probabilty scale used to set strong priors on the the precision distribution parameters of the segregation ratios by using a 95% interval on the theoretical distribution and equating this on the logit scale (Default: c(0.025,
PREC.INT
Multiplier or setting prior for precision on logit scale corresponding to approx confidence region being precision*(1 - PREC.INT, 1 + PREC.INT) Default:0.2
params
if type.prior is specified then a list of priors parameters must be set containing components M for means, A and B for gamma prior parameters and if the model contains a random.effect then reffect.A, and reffect.B
segRatio
If specified, this value overides the automatically generated value which is set as the expected segregation ratio given the ploidy level

Value

  • Returns an object of class priorsSegratioMM which is a list with components
  • typeType of prior: one of vague, strong or specified
  • bugs.codeText containing prior statements for BUGS file
  • random.effectLogical indicating whether model contains random effect (Default: FALSE)
  • equal.variancesLogical indicating equal or separate variances for each component
  • paramsList containing Normal means on logit scale logit.means, precision on logit scale logit.prec, and Gamma parameters A and B and finally reffect.A and reffect.B if the model contains a random effect
  • callfunction call

concept

  • segregation ratio
  • dominant marker
  • autopolyploid

See Also

setModel setInits expected.segRatio segRatio setControl dumpData dumpInits or for an easier way to run a segregation ratio mixture model see runSegratioMM

Examples

Run this code
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)

## set up model with 3 components
x <- setModel(3,8)
x2 <- setPriors(x)
print(x2)

x2b <- setPriors(x, "strong")
print(x2b)

Run the code above in your browser using DataLab