Usage
setPriors(model, type.prior = c("strong",
"vague", "strong.tau","strong.s", "specified"),
mean.vague = 0.1, prec.vague = 0.1, A.vague = 0.1, B.vague = 0.1,
prec.strong=400, n.individuals=200, reffect.A = 44, reffect.B = 0.8,
M.sd = 0.025, STRONG.PREC=c(0.025, 0.975), UPPER = 0.995, PREC.INT=0.2,
params = NULL, segRatio = NULL)Arguments
model
object of class modelSegratioMM specifying model
parameters, ploidy etc
type.prior
The type of prior required being one of
strong, vague, strong.tau
strong.s or specified. The first
four prior types will automatically set prior distributions
mean.vague
The mean of Normal priors for a vague prior
prec.vague
The precision of Normal priors for a vague prior
A.vague
The shape parameter of the Gamma prior for the
precision parameters for a vague prior
B.vague
The rate (scale) parameter of the Gamma prior for the
precision parameters for a vague prior
prec.strong
Precision for Normal mean parameters when
type.prior is strong. Note that on logit scale
default is equivalent to having a 95%CI as +/- 0.1
n.individuals
Used for Binomial calculations to set prior
precision parameters when type.prior is strong.
reffect.A
The shape parameter of the Gamma prior for the
precision parameter of the random.effect for a vague prior
reffect.B
The rate (scale) parameter of the Gamma prior for the
precision parameter of the random.effect for a vague prior
M.sd
Approximate standard deviation for the mean segregation
ratios on raw probability scale - this is set to 0.025 which would
give an approximate 95% interval of 0.1 for the segregation ratio
UPPER
Cutoff for guessing parameters on logit scale noting that
logit(1) is undefined
STRONG.PREC
Interval on raw probabilty scale used to set strong
priors on the the precision distribution parameters of the
segregation ratios by using a 95% interval on the theoretical
distribution and equating this on the logit scale (Default: c(0.025,
PREC.INT
Multiplier or setting prior for precision on logit
scale corresponding to approx confidence region being precision*(1 -
PREC.INT, 1 + PREC.INT) Default:0.2
params
if type.prior is specified then a list
of priors parameters must be set containing components M for means,
A and B for gamma prior parameters and if the model contains a
random.effect then reffect.A, and reffect.B
segRatio
If specified, this value overides the automatically
generated value which is set as the expected segregation ratio given
the ploidy level