
Last chance! 50% off unlimited learning
Sale ends in
Produce and/or plot various diagnostic measures from coda
package for Bayesian mixture models for assessing marker dosage in
autopolyploids
diagnosticsJagsMix(mcmc.mixture, diagnostics = TRUE, plots = FALSE,
index = -c( grep("T\[",varnames(mcmc.mixture$mcmc.list)),
grep("b\[",varnames(mcmc.mixture$mcmc.list)) ),
trace.plots = FALSE, auto.corrs = FALSE, density.plots = FALSE,
xy.plots = FALSE, hpd.intervals = FALSE, hdp.prob = 0.95,
return.results = FALSE)
Object of class segratioMCMC
or
runJagsWrapper
after JAGS
run
produced by coda
if TRUE then print several coda
dignostic tests
if TRUE then produce several coda
dignostic plots
index of parameters for disgnostic tests/plots (Default: mixture model (and random effects) parameters)
if TRUE plot mcmc traces (default: FALSE)
if TRUE produce autocorrelations of mcmc's (default: FALSE)
if TRUE plot parameter densities (default: FALSE)
if TRUE plot traces using 'lattice' (default: FALSE)
if TRUE print and return highest posterior density
intervals for parameters specified by index
probability for hpd.intervals
if TRUE return results as list
If return.results
is TRUE then a list is returned with
components depending on various settings of arguments
mcmc
autocorr.diag
raftery.diag
geweke.diag
gelman.diag
trellisplots
# NOT RUN {
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)
# }
# NOT RUN {
## fit simple model in one hit
x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
print(x.run)
diagnosticsJagsMix(x.run)
diagnosticsJagsMix(x.run, plot=TRUE)
# }
Run the code above in your browser using DataLab