Learn R Programming

polycor (version 0.7-8)

polychor: Polychoric Correlation

Description

Computes the polychoric correlation (and its standard error) between two ordinal variables or from their contingency table, under the assumption that the ordinal variables dissect continuous latent variables that are bivariate normal. Either the maximum-likelihood estimator or a (possibly much) quicker ``two-step'' approximation is available. For the ML estimator, the estimates of the thresholds and the covariance matrix of the estimates are also available.

Usage

polychor(x, y, ML = FALSE, control = list(), std.err = FALSE, maxcor=.9999)

Arguments

x
a contingency table of counts or an ordered categorical variable; the latter can be numeric, logical, a factor, or an ordered factor, but if a factor, its levels should be in proper order.
y
if x is a variable, a second ordered categorical variable.
ML
if TRUE, compute the maximum-likelihood estimate; if FALSE, the default, compute a quicker ``two-step'' approximation.
control
optional arguments to be passed to the optim function.
std.err
if TRUE, return the estimated variance of the correlation (for the two-step estimator) or the estimated covariance matrix (for the ML estimator) of the correlation and thresholds; the default is FALSE.
maxcor
maximum absolute correlation (to insure numerical stability).

Value

If std.err is TRUE, returns an object of class "polycor" with the following components:
type
set to "polychoric".
rho
the polychoric correlation.
row.cuts
estimated thresholds for the row variable (x), for the ML estimate.
col.cuts
estimated thresholds for the column variable (y), for the ML estimate.
var
the estimated variance of the correlation, or, for the ML estimate, the estimated covariance matrix of the correlation and thresholds.
n
the number of observations on which the correlation is based.
chisq
chi-square test for bivariate normality.
df
degrees of freedom for the test of bivariate normality.
ML
TRUE for the ML estimate, FALSE for the two-step estimate.
Othewise, returns the polychoric correlation.

References

Drasgow, F. (1986) Polychoric and polyserial correlations. Pp. 68--74 in S. Kotz and N. Johnson, eds., The Encyclopedia of Statistics, Volume 7. Wiley. Olsson, U. (1979) Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika 44, 443-460.

See Also

hetcor, polyserial, print.polycor, optim

Examples

Run this code
set.seed(12345)
data <- rmvnorm(1000, c(0, 0), matrix(c(1, .5, .5, 1), 2, 2))
x <- data[,1]
y <- data[,2]
cor(x, y)  # sample correlation
x <- cut(x, c(-Inf, .75, Inf))
y <- cut(y, c(-Inf, -1, .5, 1.5, Inf))
polychor(x, y)  # 2-step estimate
polychor(x, y, ML=TRUE, std.err=TRUE)  # ML estimate

Run the code above in your browser using DataLab