Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (6.3) of this package.
Take me there.
pomp (version 0.30-1)
Statistical inference for partially observed Markov processes
Description
Inference methods for partially-observed Markov processes
Copy Link
Link to current version
Version
Version
6.3
6.2
6.1
5.11
5.10
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
4.7
4.6
4.5
4.4
4.3
4.2
4.1
3.6
3.5
3.4
3.3
3.2
3.1
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
1.19
1.18.8.2
1.18.8.1
1.18.7.1
1.18.4.1
1.18.1.1
1.18
1.17.3.1
1.17.1.1
1.17
1.16.3.2
1.16.2.4
1.16.2.1
1.16.1.2
1.16
1.15.4.1
1.15.3.2
1.15.2.2
1.15
1.14.2.1
1.14.1.5
1.14.1.1
1.14
1.13.4.2
1.13.3.1
1.13.2.1
1.13
1.12
1.10
1.9
1.8
1.7
1.6
1.4.1.1
1.3.1.1
1.2.1.1
1.1.1.1
0.65-1
0.53-5
0.53-1
0.49-2
0.49-1
0.45-8
0.43-8
0.43-4
0.43-1
0.42-4
0.42-1
0.41-3
0.41-1
0.40-2
0.40-1
0.39-4
0.39-3
0.39-2
0.39-1
0.38-5
0.38-3
0.38-2
0.38-1
0.37-1
0.36-7
0.36-5
0.36-4
0.36-2
0.36-1
0.35-1
0.34-2
0.34-1
0.33-1
0.32-6
0.32-5
0.32-1
0.31-1
0.30-1
0.29-5
0.29-2
0.28-5
0.28-2
0.27-2
0.27-1
0.26-3
0.25-7
0.25-4
0.24-7
0.24-5
0.24-1
0.23-6
0.23-5
0.23-2
0.23-1
0.22-6
0.22-5
0.22-4
0.21-3
0.20-8
0.20-4
0.20-2
0.19-1
0.18-3
0.18-2
0.18-1
0.17-3
0.17-2
Install
install.packages('pomp')
Monthly Downloads
2,109
Version
0.30-1
License
GPL (>= 2)
Maintainer
Aaron King
Last Published
June 29th, 2010
Functions in pomp (0.30-1)
Search all functions
B-splines
B-spline bases
traj.match
Trajectory matching
dacca
Model of cholera transmission for historic Bengal.
mif-methods
Methods of the "mif" class
dprocess-pomp
Evaluate the probability density of state transitions in a Markov process
verhulst
Simple Verhulst-Pearl (logistic) model.
skeleton-pomp
Evaluate the deterministic skeleton at the given points in state space.
pomp-fun
Definition and methods of the "pomp.fun" class
init.state-pomp
Return a matrix of initial conditions given a vector of parameters and an initial time.
plugins
Plug-ins for dynamical models based on stochastic Euler algorithms
rprocess-pomp
Simulate the process model of a partially-observed Markov process
simulate-pomp
Running simulations of a partially-observed Markov process
dmeasure-pomp
Evaluate the probability density of observations given underlying states in a partially-observed Markov process
ou2
Two-dimensional Ornstein-Uhlenbeck process
mif
The MIF algorithm
euler
Plug-ins for dynamical models based on stochastic Euler algorithms
pomp
Partially-observed Markov process object.
Euler-multinomial models
Euler-multinomial models
trajectory
Compute trajectories of the determinstic skeleton.
bsmc
Liu and West Bayesian Particle Filter
mif-class
The "mif" class
particles-mif
Generate particles from the user-specified distribution.
pomp-class
Partially-observed Markov process class
LondonYorke
Historical childhood disease incidence data
sir
Seasonal SIR model implemented using two stochastic simulation algorithms.
pomp-methods
Methods of the "pomp" class
slice.design
Design matrices for likelihood slices and profiles
pomp-package
Partially-observed Markov processes
sobol
Sobol' low-discrepancy sequence
rmeasure-pomp
Simulate the measurement model of a partially-observed Markov process
rw2
Two-dimensional random-walk process
pfilter
Particle filter
nlf
Fit Model to Data Using Nonlinear Forecasting (NLF)