Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (6.3) of this package.
Take me there.
pomp (version 0.35-1)
Statistical inference for partially observed Markov processes
Description
Inference methods for partially-observed Markov processes
Copy Link
Link to current version
Version
Version
6.3
6.2
6.1
5.11
5.10
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
4.7
4.6
4.5
4.4
4.3
4.2
4.1
3.6
3.5
3.4
3.3
3.2
3.1
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
1.19
1.18.8.2
1.18.8.1
1.18.7.1
1.18.4.1
1.18.1.1
1.18
1.17.3.1
1.17.1.1
1.17
1.16.3.2
1.16.2.4
1.16.2.1
1.16.1.2
1.16
1.15.4.1
1.15.3.2
1.15.2.2
1.15
1.14.2.1
1.14.1.5
1.14.1.1
1.14
1.13.4.2
1.13.3.1
1.13.2.1
1.13
1.12
1.10
1.9
1.8
1.7
1.6
1.4.1.1
1.3.1.1
1.2.1.1
1.1.1.1
0.65-1
0.53-5
0.53-1
0.49-2
0.49-1
0.45-8
0.43-8
0.43-4
0.43-1
0.42-4
0.42-1
0.41-3
0.41-1
0.40-2
0.40-1
0.39-4
0.39-3
0.39-2
0.39-1
0.38-5
0.38-3
0.38-2
0.38-1
0.37-1
0.36-7
0.36-5
0.36-4
0.36-2
0.36-1
0.35-1
0.34-2
0.34-1
0.33-1
0.32-6
0.32-5
0.32-1
0.31-1
0.30-1
0.29-5
0.29-2
0.28-5
0.28-2
0.27-2
0.27-1
0.26-3
0.25-7
0.25-4
0.24-7
0.24-5
0.24-1
0.23-6
0.23-5
0.23-2
0.23-1
0.22-6
0.22-5
0.22-4
0.21-3
0.20-8
0.20-4
0.20-2
0.19-1
0.18-3
0.18-2
0.18-1
0.17-3
0.17-2
Install
install.packages('pomp')
Monthly Downloads
6,668
Version
0.35-1
License
GPL (>= 2)
Maintainer
Aaron King
Last Published
October 26th, 2010
Functions in pomp (0.35-1)
Search all functions
mif-class
The "mif" class
pomp-package
Partially-observed Markov processes
particles-mif
Generate particles from the user-specified distribution.
pomp
Partially-observed Markov process object.
traj.match
Trajectory matching
spect
Power spectrum computation for partially-observed Markov processes.
pfilter
Particle filter
dacca
Model of cholera transmission for historic Bengal.
probed.pomp-methods
Methods of the "probed.pomp", "probe.matched.pomp", "spect.pomp", and "spect.matched.pomp" classes
LondonYorke
Historical childhood disease incidence data
ou2
Two-dimensional Ornstein-Uhlenbeck process
dprocess-pomp
Evaluate the probability density of state transitions in a Markov process
verhulst
Simple Verhulst-Pearl (logistic) model.
Euler-multinomial models
Euler-multinomial models
rw2
Two-dimensional random-walk process
basic.probes
Some probes for partially-observed Markov processes
init.state-pomp
Return a matrix of initial conditions given a vector of parameters and an initial time.
mif-methods
Methods of the "mif" class
mif
The MIF algorithm
nlf
Fit Model to Data Using Nonlinear Forecasting (NLF)
simulate-pomp
Running simulations of a partially-observed Markov process
pomp-methods
Methods of the "pomp" class
B-splines
B-spline bases
sir
Seasonal SIR model implemented using two stochastic simulation algorithms.
bsmc
Liu and West Bayesian Particle Filter
spect.pomp-class
The "spect.pomp" and "spect.matched.pomp" classes
plugins
Plug-ins for dynamical models based on stochastic Euler algorithms
pmcmc
The PMCMC algorithm
dmeasure-pomp
Evaluate the probability density of observations given underlying states in a partially-observed Markov process
probe
Probe a partially-observed Markov process.
pmcmc-class
The "pmcmc" class
slice.design
Design matrices for likelihood slices.
skeleton-pomp
Evaluate the deterministic skeleton at the given points in state space.
sobol
Sobol' low-discrepancy sequence
pomp-fun
Definition and methods of the "pomp.fun" class
profile.design
Design matrices for likelihood profile calculations.
ricker
Ricker model with Poisson observations.
pmcmc-methods
Methods of the "pmcmc" class
pomp-class
Partially-observed Markov process class
rmeasure-pomp
Simulate the measurement model of a partially-observed Markov process
rprocess-pomp
Simulate the process model of a partially-observed Markov process
trajectory
Compute trajectories of the determinstic skeleton.
probed.pomp-class
The "probed.pomp" and "probe.matched.pomp" classes