Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (6.3) of this package.
Take me there.
pomp (version 0.38-5)
Statistical inference for partially observed Markov processes
Description
Inference methods for partially-observed Markov processes
Copy Link
Link to current version
Version
Version
6.3
6.2
6.1
5.11
5.10
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
4.7
4.6
4.5
4.4
4.3
4.2
4.1
3.6
3.5
3.4
3.3
3.2
3.1
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
1.19
1.18.8.2
1.18.8.1
1.18.7.1
1.18.4.1
1.18.1.1
1.18
1.17.3.1
1.17.1.1
1.17
1.16.3.2
1.16.2.4
1.16.2.1
1.16.1.2
1.16
1.15.4.1
1.15.3.2
1.15.2.2
1.15
1.14.2.1
1.14.1.5
1.14.1.1
1.14
1.13.4.2
1.13.3.1
1.13.2.1
1.13
1.12
1.10
1.9
1.8
1.7
1.6
1.4.1.1
1.3.1.1
1.2.1.1
1.1.1.1
0.65-1
0.53-5
0.53-1
0.49-2
0.49-1
0.45-8
0.43-8
0.43-4
0.43-1
0.42-4
0.42-1
0.41-3
0.41-1
0.40-2
0.40-1
0.39-4
0.39-3
0.39-2
0.39-1
0.38-5
0.38-3
0.38-2
0.38-1
0.37-1
0.36-7
0.36-5
0.36-4
0.36-2
0.36-1
0.35-1
0.34-2
0.34-1
0.33-1
0.32-6
0.32-5
0.32-1
0.31-1
0.30-1
0.29-5
0.29-2
0.28-5
0.28-2
0.27-2
0.27-1
0.26-3
0.25-7
0.25-4
0.24-7
0.24-5
0.24-1
0.23-6
0.23-5
0.23-2
0.23-1
0.22-6
0.22-5
0.22-4
0.21-3
0.20-8
0.20-4
0.20-2
0.19-1
0.18-3
0.18-2
0.18-1
0.17-3
0.17-2
Install
install.packages('pomp')
Monthly Downloads
1,709
Version
0.38-5
License
GPL (>= 2)
Maintainer
Aaron King
Last Published
July 24th, 2011
Functions in pomp (0.38-5)
Search all functions
LondonYorke
Historical childhood disease incidence data
gompertz
Gompertz model with log-normal observations.
eulermultinom
Euler-multinomial death process
rmeasure-pomp
Simulate the measurement model of a partially-observed Markov process
particles-mif
Generate particles from the user-specified distribution.
plugins
Plug-ins for dynamical models based on stochastic Euler algorithms
ricker
Ricker model with Poisson observations.
pomp-fun
Definition and methods of the "pomp.fun" class
pmcmc
The PMCMC algorithm
sir
Seasonal SIR model implemented using two stochastic simulation algorithms.
skeleton-pomp
Evaluate the deterministic skeleton at the given points in state space.
mif-class
The "mif" class
pomp-class
Partially-observed Markov process class
probe
Probe a partially-observed Markov process.
spect
Power spectrum computation for partially-observed Markov processes.
sobol
Sobol' low-discrepancy sequence
pmcmc-methods
Methods of the "pmcmc" class
blowflies
Model for Nicholson's blowflies.
dmeasure-pomp
Evaluate the probability density of observations given underlying states in a partially-observed Markov process
trajectory
Compute trajectories of the determinstic skeleton.
traj.match
Trajectory matching
pomp-methods
Methods of the "pomp" class
init.state-pomp
Return a matrix of initial conditions given a vector of parameters and an initial time.
pfilter
Particle filter
profile.design
Design matrices for likelihood profile calculations.
mif-methods
Methods of the "mif" class
verhulst
Simple Verhulst-Pearl (logistic) model.
rw2
Two-dimensional random-walk process
pfilter-methods
Methods of the "pfilterd.pomp" class
basic.probes
Some probes for partially-observed Markov processes
slice.design
Design matrices for likelihood slices.
bsmc
Liu and West Bayesian Particle Filter
B-splines
B-spline bases
pomp
Partially-observed Markov process object.
rprocess-pomp
Simulate the process model of a partially-observed Markov process
nlf
Fit Model to Data Using Nonlinear Forecasting (NLF)
pomp-package
Partially-observed Markov processes
ou2
Two-dimensional discrete-time Ornstein-Uhlenbeck process
mif
The MIF algorithm
simulate-pomp
Running simulations of a partially-observed Markov process
dacca
Model of cholera transmission for historic Bengal.
probed.pomp-methods
Methods of the "probed.pomp", "probe.matched.pomp", "spect.pomp", and "spect.matched.pomp" classes
dprocess-pomp
Evaluate the probability density of state transitions in a Markov process