Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (6.3) of this package.
Take me there.
pomp (version 0.45-8)
Statistical inference for partially observed Markov processes
Description
Inference methods for partially-observed Markov processes
Copy Link
Link to current version
Version
Version
6.3
6.2
6.1
5.11
5.10
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
4.7
4.6
4.5
4.4
4.3
4.2
4.1
3.6
3.5
3.4
3.3
3.2
3.1
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
1.19
1.18.8.2
1.18.8.1
1.18.7.1
1.18.4.1
1.18.1.1
1.18
1.17.3.1
1.17.1.1
1.17
1.16.3.2
1.16.2.4
1.16.2.1
1.16.1.2
1.16
1.15.4.1
1.15.3.2
1.15.2.2
1.15
1.14.2.1
1.14.1.5
1.14.1.1
1.14
1.13.4.2
1.13.3.1
1.13.2.1
1.13
1.12
1.10
1.9
1.8
1.7
1.6
1.4.1.1
1.3.1.1
1.2.1.1
1.1.1.1
0.65-1
0.53-5
0.53-1
0.49-2
0.49-1
0.45-8
0.43-8
0.43-4
0.43-1
0.42-4
0.42-1
0.41-3
0.41-1
0.40-2
0.40-1
0.39-4
0.39-3
0.39-2
0.39-1
0.38-5
0.38-3
0.38-2
0.38-1
0.37-1
0.36-7
0.36-5
0.36-4
0.36-2
0.36-1
0.35-1
0.34-2
0.34-1
0.33-1
0.32-6
0.32-5
0.32-1
0.31-1
0.30-1
0.29-5
0.29-2
0.28-5
0.28-2
0.27-2
0.27-1
0.26-3
0.25-7
0.25-4
0.24-7
0.24-5
0.24-1
0.23-6
0.23-5
0.23-2
0.23-1
0.22-6
0.22-5
0.22-4
0.21-3
0.20-8
0.20-4
0.20-2
0.19-1
0.18-3
0.18-2
0.18-1
0.17-3
0.17-2
Install
install.packages('pomp')
Monthly Downloads
2,074
Version
0.45-8
License
GPL (>= 2)
Maintainer
Aaron King
Last Published
January 9th, 2014
Functions in pomp (0.45-8)
Search all functions
bsmc
Liu and West Bayesian Particle Filter
dacca
Model of cholera transmission for historic Bengal.
dprocess-pomp
Evaluate the probability density of state transitions in a Markov process
verhulst
Simple Verhulst-Pearl (logistic) model.
mif-methods
Methods of the "mif" class
sliceDesign
Design matrices for likelihood slices.
logmeanexp
The log-mean-exp trick
pomp-fun
Definition and methods of the "pomp.fun" class
B-splines
B-spline bases
LondonYorke
Historical childhood disease incidence data
pfilter
Particle filter
sannbox
Simulated annealing with box constraints.
ou2
Two-dimensional discrete-time Ornstein-Uhlenbeck process
gompertz
Gompertz model with log-normal observations.
dmeasure-pomp
Evaluate the probability density of observations given underlying states in a partially-observed Markov process
mif-class
The "mif" class
eulermultinom
Euler-multinomial death process
basic.probes
Some probes for partially-observed Markov processes
probe
Probe a partially-observed Markov process.
pompExample
Pre-built examples of pomp objects.
pompBuilder
Write, compile, link, and build a pomp object using native codes
nlf
Fit Model to Data Using Nonlinear Forecasting (NLF)
pomp-methods
Methods of the "pomp" class
simulate-pomp
Running simulations of a partially-observed Markov process
sobol
Sobol' low-discrepancy sequence
rmeasure-pomp
Simulate the measurement model of a partially-observed Markov process
profileDesign
Design matrices for likelihood profile calculations.
particles-mif
Generate particles from the user-specified distribution.
spect
Power spectrum computation for partially-observed Markov processes.
skeleton-pomp
Evaluate the deterministic skeleton at the given points in state space.
pomp-package
Partially-observed Markov processes
pomp-class
Partially-observed Markov process class
ricker
Ricker model with Poisson observations.
pfilter-methods
Methods of the "pfilterd.pomp" class
rprocess-pomp
Simulate the process model of a partially-observed Markov process
plugins
Plug-ins for dynamical models based on stochastic Euler algorithms
parmat
Create a matrix of parameters
traj.match
Trajectory matching
pomp
Partially-observed Markov process object.
mif
The MIF algorithm
pmcmc-methods
Methods of the "pmcmc" class
trajectory
Compute trajectories of the deterministic skeleton.
init.state-pomp
Return a matrix of initial conditions given a vector of parameters and an initial time.
sir
SIR models.
probed.pomp-methods
Methods of the "probed.pomp", "probe.matched.pomp", "spect.pomp", and "spect.matched.pomp" classes
rw2
Two-dimensional random-walk process
pmcmc
The PMCMC algorithm
blowflies
Model for Nicholson's blowflies.