Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (6.2) of this package.
Take me there.
pomp (version 0.53-5)
Statistical inference for partially observed Markov processes
Description
Inference methods for partially-observed Markov processes
Copy Link
Link to current version
Version
Version
6.2
6.1
5.11
5.10
5.9
5.8
5.7
5.6
5.5
5.4
5.3
5.2
5.1
4.7
4.6
4.5
4.4
4.3
4.2
4.1
3.6
3.5
3.4
3.3
3.2
3.1
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
1.19
1.18.8.2
1.18.8.1
1.18.7.1
1.18.4.1
1.18.1.1
1.18
1.17.3.1
1.17.1.1
1.17
1.16.3.2
1.16.2.4
1.16.2.1
1.16.1.2
1.16
1.15.4.1
1.15.3.2
1.15.2.2
1.15
1.14.2.1
1.14.1.5
1.14.1.1
1.14
1.13.4.2
1.13.3.1
1.13.2.1
1.13
1.12
1.10
1.9
1.8
1.7
1.6
1.4.1.1
1.3.1.1
1.2.1.1
1.1.1.1
0.65-1
0.53-5
0.53-1
0.49-2
0.49-1
0.45-8
0.43-8
0.43-4
0.43-1
0.42-4
0.42-1
0.41-3
0.41-1
0.40-2
0.40-1
0.39-4
0.39-3
0.39-2
0.39-1
0.38-5
0.38-3
0.38-2
0.38-1
0.37-1
0.36-7
0.36-5
0.36-4
0.36-2
0.36-1
0.35-1
0.34-2
0.34-1
0.33-1
0.32-6
0.32-5
0.32-1
0.31-1
0.30-1
0.29-5
0.29-2
0.28-5
0.28-2
0.27-2
0.27-1
0.26-3
0.25-7
0.25-4
0.24-7
0.24-5
0.24-1
0.23-6
0.23-5
0.23-2
0.23-1
0.22-6
0.22-5
0.22-4
0.21-3
0.20-8
0.20-4
0.20-2
0.19-1
0.18-3
0.18-2
0.18-1
0.17-3
0.17-2
Install
install.packages('pomp')
Monthly Downloads
2,074
Version
0.53-5
License
GPL (>= 2)
Maintainer
Aaron King
Last Published
August 4th, 2014
Functions in pomp (0.53-5)
Search all functions
dprocess-pomp
Evaluate the probability density of state transitions in a Markov process
ricker
Ricker model with Poisson observations.
pompExample
Pre-built examples of pomp objects.
prior-pomp
Evaluate or simulate from the prior probability density
dacca
Model of cholera transmission for historic Bengal.
Csnippet
C code snippets
blowflies
Model for Nicholson's blowflies.
mif
Iterated filtering
parmat
Create a matrix of parameters
pmcmc-methods
Methods of the "pmcmc" class
spect
Power spectrum computation for partially-observed Markov processes.
sannbox
Simulated annealing with box constraints.
rprocess-pomp
Simulate the process model of a partially-observed Markov process
verhulst
Simple Verhulst-Pearl (logistic) model.
rw2
Two-dimensional random-walk process
sliceDesign
Design matrices for likelihood slices.
sir
SIR models.
abc
The ABC algorithm
basic.probes
Some probes for partially-observed Markov processes
init.state-pomp
Return a matrix of initial conditions given a vector of parameters and an initial time.
ou2
Two-dimensional discrete-time Ornstein-Uhlenbeck process
plugins
Plug-ins for dynamical models based on stochastic Euler algorithms
pmcmc
The PMCMC algorithm
probed.pomp-methods
Methods of the "probed.pomp", "probe.matched.pomp", "spect.pomp", and "spect.matched.pomp" classes
eulermultinom
Euler-multinomial death process
nlf
Fit Model to Data Using Nonlinear Forecasting (NLF)
pfilter-methods
Methods of the "pfilterd.pomp" class
mif-methods
Methods of the "mif" class
dmeasure-pomp
Evaluate the probability density of observations given underlying states in a partially-observed Markov process
B-splines
B-spline bases
abc-methods
Methods of the "abc" class
skeleton-pomp
Evaluate the deterministic skeleton at the given points in state space.
trajectory
Compute trajectories of the deterministic skeleton.
simulate-pomp
Running simulations of a partially-observed Markov process
profileDesign
Design matrices for likelihood profile calculations.
bsmc
Liu and West Bayesian Particle Filter
pomp-fun
Definition and methods of the "pomp.fun" class
pomp-methods
Methods of the "pomp" class
traj.match
Trajectory matching
gompertz
Gompertz model with log-normal observations.
rmeasure-pomp
Simulate the measurement model of a partially-observed Markov process
LondonYorke
Historical childhood disease incidence data
pompBuilder
Write, compile, link, and build a pomp object using native codes
pomp
Partially-observed Markov process object.
particles-mif
Generate particles from the user-specified distribution.
logmeanexp
The log-mean-exp trick
pomp-package
Partially-observed Markov processes
sobol
Sobol' low-discrepancy sequence
pfilter
Particle filter
probe
Probe a partially-observed Markov process.