logmeanexp computes $$\log\frac{1}{N}\sum_{n=1}^N\!e^x_i,$$ avoiding over- and under-flow in doing so. It can
optionally return an estimate of the standard error in this quantity.
Usage
logmeanexp(x, se = FALSE)
Arguments
x
numeric
se
logical; give approximate standard error?
Value
log(mean(exp(x))) computed so as to avoid over- or
underflow. If se = FALSE, the approximate standard error is
returned as well.
Details
When se = TRUE, logmeanexp uses a jackknife estimate of the
variance in \(log(x)\).
# NOT RUN {## an estimate of the log likelihood:po <- ricker()
ll <- replicate(n=5,logLik(pfilter(po,Np=1000)))
logmeanexp(ll)
## with standard error:logmeanexp(ll,se=TRUE)
# }