Probe a partially-observed Markov process by computing summary statistics and the synthetic likelihood.
# S4 method for data.frame
probe(
data,
...,
probes,
nsim,
seed = NULL,
params,
rinit,
rprocess,
rmeasure,
verbose = getOption("verbose", FALSE)
)# S4 method for pomp
probe(
data,
...,
probes,
nsim,
seed = NULL,
verbose = getOption("verbose", FALSE)
)
# S4 method for probed_pomp
probe(
data,
...,
probes,
nsim,
seed = NULL,
verbose = getOption("verbose", FALSE)
)
# S4 method for probe_match_objfun
probe(data, ..., seed, verbose = getOption("verbose", FALSE))
# S4 method for objfun
probe(data, ..., seed = NULL)
probe
returns an object of class ‘probed_pomp’, which contains the data and the model, together with the results of the probe
calculation.
either a data frame holding the time series data,
or an object of class ‘pomp’,
i.e., the output of another pomp calculation.
Internally, data
will be coerced to an array with storage-mode double
.
additional arguments are passed to pomp
.
This allows one to set, unset, or modify basic model components within a call to this function.
a single probe or a list of one or more probes. A probe is simply a scalar- or vector-valued function of one argument that can be applied to the data array of a ‘pomp’. A vector-valued probe must always return a vector of the same size. A number of useful probes are provided with the package: see basic probes.
the number of model simulations to be computed.
optional integer;
if set, the pseudorandom number generator (RNG) will be initialized with seed
.
The RNG will be restored to its original state afterward.
optional; named numeric vector of parameters.
This will be coerced internally to storage mode double
.
simulator of the initial-state distribution.
This can be furnished either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library.
Setting rinit=NULL
sets the initial-state simulator to its default.
For more information, see rinit specification.
simulator of the latent state process, specified using one of the rprocess plugins.
Setting rprocess=NULL
removes the latent-state simulator.
For more information, see rprocess specification for the documentation on these plugins.
simulator of the measurement model, specified either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library.
Setting rmeasure=NULL
removes the measurement model simulator.
For more information, see rmeasure specification.
logical; if TRUE
, diagnostic messages will be printed to the console.
The following methods are available.
plot
displays diagnostic plots.
summary
displays summary information. The summary includes quantiles (fractions of simulations with probe values less than those realized on the data) and the corresponding two-sided p-values. In addition, the “synthetic likelihood” (Wood 2010) is computed, under the assumption that the probe values are multivariate-normally distributed.
logLik
returns the synthetic likelihood for the probes. NB: in general, this is not the same as the likelihood.
as.data.frame
coerces a ‘probed_pomp’ to a ‘data.frame’.
The latter contains the realized values of the probes on the data and on the simulations.
The variable .id
indicates whether the probes are from the data or simulations.
Some Windows users report problems when using C snippets in parallel computations.
These appear to arise when the temporary files created during the C snippet compilation process are not handled properly by the operating system.
To circumvent this problem, use the cdir
and cfile
options to cause the C snippets to be written to a file of your choice, thus avoiding the use of temporary files altogether.
Daniel C. Reuman, Aaron A. King
probe
applies one or more “probes” to time series data and
model simulations and compares the results. It can be used to diagnose
goodness of fit and/or as the basis for “probe-matching”, a
generalized method-of-moments approach to parameter estimation.
A call to probe
results in the evaluation of the probe(s) in
probes
on the data. Additionally, nsim
simulated data sets
are generated (via a call to simulate
) and
the probe(s) are applied to each of these. The results of the probe
computations on real and simulated data are stored in an object of class
‘probed_pomp’.
When probe
operates on a probe-matching objective function (a ‘probe_match_objfun’ object), by default, the
random-number generator seed is fixed at the value given when the objective function was constructed.
Specifying NULL
or an integer for seed
overrides this behavior.
B.E. Kendall, C.J. Briggs, W.W. Murdoch, P. Turchin, S.P. Ellner, E. McCauley, R.M. Nisbet, and S.N. Wood. Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80, 1789--1805, 1999. tools:::Rd_expr_doi("10.2307/176658").
S. N. Wood Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466, 1102--1104, 2010. tools:::Rd_expr_doi("10.1038/nature09319").
More on pomp elementary algorithms:
elementary_algorithms
,
kalman
,
pfilter()
,
pomp-package
,
simulate()
,
spect()
,
trajectory()
,
wpfilter()
More on methods based on summary statistics:
abc()
,
basic_probes
,
nlf
,
probe_match
,
spect()
,
spect_match