
Last chance! 50% off unlimited learning
Sale ends in
Returns the extinction time cumulative distribution function using parameters derived from population counts.
extCDF(mu, sig2, Nc, Ne, tmax = 50)
A vector with the cumulative probabilities of quasi-extinction from t=0 to t=tmax.
estimated value of mean mu
estimated value of sample variance
current population size
quasi-extinction threshold
latest time to calculate extinction probability, default 50
Chris Stubben
converted Matlab code from Box 3.3 and equation 3.5 in Morris and Doak 2002
Morris, W. F., and D. F. Doak. 2002. Quantitative conservation biology: Theory and practice of population viability analysis. Sinauer, Sunderland, Massachusetts, USA.
countCDFxt
for bootstrap confidence intervals
logN <- log(grizzly$N[-1]/grizzly$N[-39])
mu <- mean(logN)
sig2 <- var(logN)
## grizzly cdf (log scale)
ex <- extCDF(mu, sig2, Nc=99, Ne=20)
plot(ex, log='y', type='l', pch=16, col="blue", yaxt='n',
xlab="Years", ylab="Quasi-extinction probability",
main="Yellowstone Grizzly bears")
pwrs <- seq(-15,-5,5)
axis(2, at = 10^pwrs, labels=parse(text=paste("10^", pwrs, sep = "")), las=1)
##plot like fig 3.10 (p 90)
n <- seq(20, 100, 2)
exts <- numeric(length(n))
for (i in 1:length(n) ){
ex <- extCDF(mu, sig2, Nc=n[i], Ne=20)
exts[i] <- ex[50]
}
plot(n, exts, type='l', las=1,
xlab="Current population size",
ylab="Probability of quasi-extinction by year 50")
Run the code above in your browser using DataLab