# set parameters
p <- 10
Se <- diag(runif(p))
Sz <- matrix(3, p, p)
diag(Sz) <- 4
# draw data
n <- 100
ids <- numeric()
Y <- numeric()
for (i in 1:n){
Ki <- sample(2:5, 1)
Zi <- mvtnorm::rmvnorm(1, sigma=Sz)
for (k in 1:Ki){
Y <- rbind(Y, Zi + mvtnorm::rmvnorm(1, sigma=Se))
ids <- c(ids, i)
}
}
# find optimal penalty parameters
### optLambdas <- optPenaltyPrep.kCVauto(Y, ids,
### lambdaInit=c(1,1),
### fold=nrow(Y),
### CVcrit="LL")
# estimate the precision matrices
### Ps <- ridgePrep(Y, ids, optLambdas[1], optLambdas[2])
Run the code above in your browser using DataLab