# NOT RUN {
n = 1000
p = 10
X = matrix(rnorm(n*p),n,p)
W = rbinom(n, 1, 0.4 + 0.2 * (X[,1] > 0))
Y = pmax(X[,1], 0) * W + X[,2] + pmin(X[,3], 0) + rnorm(n)
fit_on <- sample(1:1000, size = 333)
pred_on_1 <- sample(c(1:1000)[-fit_on], size = 333)
pred_on_2 <- c(1:1000)[-c(fit_on,pred_on_1)]
models <- ols_helper( X = X[fit_on,],
Y = Y[fit_on],
W = W[fit_on] )
folds_fit <- list()
folds_fit[[1]] <- data.frame(cbind(pred_on_1, X[pred_on_1,], W[pred_on_1], Y[pred_on_1]))
folds_fit[[2]] <- data.frame(cbind(pred_on_2, X[pred_on_2,], W[pred_on_2], Y[pred_on_2]))
for(i in 1:length(folds_fit)){
names( folds_fit[[i]] ) <- c("sample_id","Y_t", paste("X_t_", 1:ncol(X), sep = ""), "W_t")
}
cross_fit_helper( model_W = models[[1]],
model_Y = models[[2]],
folds_to_fit = folds_fit,
use = "ols")
# }
Run the code above in your browser using DataLab