logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are \(P[X \le x ]\), otherwise, P[X > x].
p
vector of probabilities.
n
number of observations.
Details
The power Laplace distribution has density
\(f(x)=\lambda\left[\frac{1}{2}+\frac{\left(1-e^{-\frac{\left|x-\mu\right|}{\sigma}}\right)}{2}\textrm{sign}\left(\frac{x-\mu}{\sigma}\right)\right]^{\lambda-1}\left[\frac{e^{-\frac{\left|x-\mu\right|}{\sigma}}}{2\sigma}\right]\),
where \(-\infty<\mu<\infty\) is the location paramether, \(\sigma^2>0\) the scale parameter and \(\lambda>0\) the shape parameter.