
Density, distribution function, quantile function and random generation for the power logistic distribution with parameters mu, sigma and lambda.
dplogis(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)pplogis(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qplogis(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rplogis(n, lambda = 1, mu = 0, sigma = 1)
vector of quantiles.
shape parameter.
location and scale parameters.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are
vector of probabilities.
number of observations.
The power Logistic distribution has density
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de S<U+00E3>o Paulo - Universidade Federal de S<U+00E3>o Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Baz<U+00E1>n, J. L., Torres -Avil<U+00E9>s, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 16. Wiley, New York.
Lemonte, A. J. and Baz<U+00E1>n, J. L. (2017) New links for binary regression: an application to coca cultivation in Peru. TEST.
Nadarajah, S. (2009) The skew logistic distribution. AStA Advances in Statistical Analysis, 93, 187-203.
Prentice, R. L. (1976) A Generalization of the probit and logit methods for dose-response curves. Biometrika, 32, 761-768.
# NOT RUN {
dplogis(1, 1, 3, 4)
pplogis(1, 1, 3, 4)
qplogis(0.2, 1, 3, 4)
rplogis(5, 2, 3, 4)
# }
Run the code above in your browser using DataLab