Density, distribution function, quantile function and random generation for the Reversal-Gumbel distribution with parameters mu and sigma.
drgumbel(x, mu = 0, sigma = 1, log = FALSE)prgumbel(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qrgumbel(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rrgumbel(n, mu = 0, sigma = 1)
vector of quantiles.
location and scale parameters.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X \le x ]\), otherwise, P[X > x].
vector of probabilities.
number of observations.
The reversal-Gumbel distribution has density
\(f(x)=\left[\frac{1}{\sigma}e^{\left(\frac{x-\mu}{\sigma}\right)-e^{\left(\frac{x-\mu}{\sigma}\right)}}\right]\),
where \(-\infty<\mu<\infty\) is the location paramether and \(\sigma^2>0\) is the scale parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de S<U+00E3>o Paulo - Universidade Federal de S<U+00E3>o Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Baz<U+00E1>n, J. L., Torres -Avil<U+00E9>s, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
# NOT RUN {
drgumbel(1, 3, 4)
prgumbel(1, 3, 4)
qrgumbel(0.2, 3, 4)
rprgumbel(5, 3, 4)
# }
Run the code above in your browser using DataLab