Density, distribution function, quantile function and random generation for the reversal power Cauchy distribution with parameters mu, sigma and lambda.
drpcauchy(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)prpcauchy(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
qrpcauchy(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE,
log.p = FALSE)
rrpcauchy(n, lambda = 1, mu = 0, sigma = 1)
vector of quantiles.
shape parameter.
location and scale parameters.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X \le x ]\), otherwise, P[X > x].
vector of probabilities.
number of observations.
The reversal power Cauchy distribution has density
\(f(x)=\lambda\left [\frac{1}{\pi}\arctan\left (-\frac{x-\mu}{\sigma} \right )+\frac{1}{2} \right ]^{\lambda -1}\left[ \frac{1}{\pi\sigma\left( 1+\left (\frac{x-\mu}{\sigma} \right )^{2} \right)} \right]\)
where \(-\infty<\mu<\infty\) is the location paramether, \(\sigma^2>0\) the scale parameter and \(\lambda>0\) the shape parameter.
Anyosa, S. A. C. (2017) Binary regression using power and reversal power links. Master's thesis in Portuguese. Interinstitutional Graduate Program in Statistics. Universidade de S<U+00E3>o Paulo - Universidade Federal de S<U+00E3>o Carlos. Available in https://repositorio.ufscar.br/handle/ufscar/9016.
Baz<U+00E1>n, J. L., Torres -Avil<U+00E9>s, F., Suzuki, A. K. and Louzada, F. (2017) Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry, 33(1), 22-34.
# NOT RUN {
drpcauchy(1, 1, 3, 4)
prpcauchy(1, 1, 3, 4)
qrpcauchy(0.2, 1, 3, 4)
rrpcauchy(5, 2, 3, 4)
# }
Run the code above in your browser using DataLab