powered by
Density, distribution function, quantile function and random generation for the power reversal Laplace distribution with parameters mu, sigma and lambda.
drplaplace(x, lambda = 1, mu = 0, sigma = 1, log = FALSE)prplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)qrplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)rrplaplace(n, lambda = 1, mu = 0, sigma = 1)
prplaplace(q, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qrplaplace(p, lambda = 1, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rrplaplace(n, lambda = 1, mu = 0, sigma = 1)
vector of quantiles.
shape parameter.
location and scale parameters.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X \le x ]\), otherwise, P[X > x].
vector of probabilities.
number of observations.
The reversal power Laplace distribution has density
\(f(x)=\lambda\left[\frac{1}{2}+\frac{\left(1-e^{\frac{\left|x-\mu\right|}{\sigma}}\right)}{2}\textrm{sign}\left(-\frac{x-\mu}{\sigma}\right)\right]^{\lambda-1}\left[\frac{e^{-\frac{\left|x-\mu\right|}{\sigma}}}{2\sigma}\right]\),
where \(-\infty<\mu<\infty\) is the location paramether, \(\sigma^2>0\) the scale parameter and \(\lambda>0\) the shape parameter.
# NOT RUN { drplaplace(1, 1, 3, 4) prplaplace(1, 1, 3, 4) qrplaplace(0.2, 1, 3, 4) rrplaplace(5, 2, 3, 4) # }
Run the code above in your browser using DataLab